Soumen commited on
Commit
157dac9
·
1 Parent(s): 02635d7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -15
app.py CHANGED
@@ -21,7 +21,7 @@ print("RESNET MODEL LOADED")
21
  def load_image(img):
22
  im = Image.open(img)
23
  return im
24
- activities = ["Caption","About"]
25
  choice = st.sidebar.selectbox("Select Activty",activities)
26
  model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
27
  uploaded_photo = c2.file_uploader("Upload Image",type=['jpg','png','jpeg'], on_change=change_photo_state)
@@ -42,17 +42,16 @@ def predict_step(our_image):
42
  preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
43
  preds = [pred.strip() for pred in preds]
44
  return preds
45
- if choice == 'Caption':
46
- #st.subheader("Detection")
47
- if st.session_state["photo"]=="done":
48
- if uploaded_photo:
49
- our_image= load_image(uploaded_photo)
50
- elif camera_photo:
51
- our_image= load_image(camera_photo)
52
- elif uploaded_photo==None and camera_photo==None:
53
- our_image= load_image('image.jpg')
54
- st.success(predict_step(our_image))
55
- elif choice == 'About':
56
- st.subheader("About Image Captioning App")
57
- st.markdown("Built with Streamlit by [Soumen Sarker](https://soumen-sarker-personal-website.streamlit.app/)")
58
- st.markdown("Demo applicaton of the following model [credit](https://huggingface.co/nlpconnect/vit-gpt2-image-captioning/)")
 
21
  def load_image(img):
22
  im = Image.open(img)
23
  return im
24
+ activities = ["About"]
25
  choice = st.sidebar.selectbox("Select Activty",activities)
26
  model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
27
  uploaded_photo = c2.file_uploader("Upload Image",type=['jpg','png','jpeg'], on_change=change_photo_state)
 
42
  preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
43
  preds = [pred.strip() for pred in preds]
44
  return preds
45
+ #st.subheader("Detection")
46
+ if st.session_state["photo"]=="done":
47
+ if uploaded_photo:
48
+ our_image= load_image(uploaded_photo)
49
+ elif camera_photo:
50
+ our_image= load_image(camera_photo)
51
+ elif uploaded_photo==None and camera_photo==None:
52
+ our_image= load_image('image.jpg')
53
+ st.success(predict_step(our_image))
54
+ if choice == 'About':
55
+ st.subheader("About Image Captioning App")
56
+ st.markdown("Built with Streamlit by [Soumen Sarker](https://soumen-sarker-personal-website.streamlit.app/)")
57
+ st.markdown("Demo applicaton of the following model [credit](https://huggingface.co/nlpconnect/vit-gpt2-image-captioning/)")