Soumen commited on
Commit
64a05ce
1 Parent(s): 2b101ad

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -18
app.py CHANGED
@@ -4,26 +4,10 @@ from PIL import Image
4
  from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer
5
  #pickle.load(open('energy_model.pkl', 'rb'))
6
  #vocab = np.load('w2i.p', allow_pickle=True)
7
- print("="*150)
8
- print("MODEL LOADED")
9
  st.title("img_captioning_app")
10
  model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
11
  feature_extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
12
  tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
13
- device = torch.device("cuda" if torch.cuda.is_available() else "CPU")
14
- model.to(device)
15
- max_length = 16
16
- num_beams = 4
17
- gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
18
- def predict_step(our_image):
19
- if our_image.mode != "RGB":
20
- our_image = our_image.convert(mode="RGB")
21
- pixel_values = feature_extractor(images=our_image, return_tensors="pt").pixel_values
22
- pixel_values = pixel_values.to(device)
23
- output_ids = model.generate(pixel_values, **gen_kwargs)
24
- preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
25
- preds = [pred.strip() for pred in preds]
26
- return preds
27
  #st.text("Build with Streamlit and OpenCV")
28
  if "photo" not in st.session_state:
29
  st.session_state["photo"]="not done"
@@ -38,7 +22,20 @@ uploaded_photo = c2.file_uploader("Upload Image",type=['jpg','png','jpeg'], on_c
38
  camera_photo = c2.camera_input("Take a photo", on_change=change_photo_state)
39
  #st.subheader("Detection")
40
  if st.checkbox("Generate_Caption"):
41
- our_image=None
 
 
 
 
 
 
 
 
 
 
 
 
 
42
  if st.session_state["photo"]=="done":
43
  if uploaded_photo:
44
  our_image= load_image(uploaded_photo)
@@ -46,7 +43,7 @@ if st.checkbox("Generate_Caption"):
46
  our_image= load_image(camera_photo)
47
  elif uploaded_photo==None and camera_photo==None:
48
  our_image= load_image('image.jpg')
49
- st.success(predict_step(our_image))
50
  elif st.checkbox("About"):
51
  st.subheader("About Image Captioning App")
52
  st.markdown("Built with Streamlit by [Soumen Sarker](https://soumen-sarker-personal-website.streamlit.app/)")
 
4
  from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer
5
  #pickle.load(open('energy_model.pkl', 'rb'))
6
  #vocab = np.load('w2i.p', allow_pickle=True)
 
 
7
  st.title("img_captioning_app")
8
  model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
9
  feature_extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
10
  tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  #st.text("Build with Streamlit and OpenCV")
12
  if "photo" not in st.session_state:
13
  st.session_state["photo"]="not done"
 
22
  camera_photo = c2.camera_input("Take a photo", on_change=change_photo_state)
23
  #st.subheader("Detection")
24
  if st.checkbox("Generate_Caption"):
25
+ device = torch.device("cuda" if torch.cuda.is_available() else "CPU")
26
+ model.to(device)
27
+ max_length = 16
28
+ num_beams = 4
29
+ gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
30
+ def predict_step(our_image):
31
+ if our_image.mode != "RGB":
32
+ our_image = our_image.convert(mode="RGB")
33
+ pixel_values = feature_extractor(images=our_image, return_tensors="pt").pixel_values
34
+ pixel_values = pixel_values.to(device)
35
+ output_ids = model.generate(pixel_values, **gen_kwargs)
36
+ preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
37
+ preds = [pred.strip() for pred in preds]
38
+ return preds
39
  if st.session_state["photo"]=="done":
40
  if uploaded_photo:
41
  our_image= load_image(uploaded_photo)
 
43
  our_image= load_image(camera_photo)
44
  elif uploaded_photo==None and camera_photo==None:
45
  our_image= load_image('image.jpg')
46
+ st.success(predict_step(our_image))
47
  elif st.checkbox("About"):
48
  st.subheader("About Image Captioning App")
49
  st.markdown("Built with Streamlit by [Soumen Sarker](https://soumen-sarker-personal-website.streamlit.app/)")