Soumen commited on
Commit
b909ce7
·
1 Parent(s): ac52316

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -2,9 +2,6 @@ import streamlit as st
2
  import torch
3
  from PIL import Image
4
  from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer
5
- model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
6
- feature_extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
7
- tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
8
  #pickle.load(open('energy_model.pkl', 'rb'))
9
  #vocab = np.load('w2i.p', allow_pickle=True)
10
  print("="*150)
@@ -31,6 +28,9 @@ camera_photo = c2.camera_input("Take a photo", on_change=change_photo_state)
31
  if choice == 'Caption':
32
  #st.subheader("Detection")
33
  if st.session_state["photo"]=="done":
 
 
 
34
  if uploaded_photo:
35
  our_image= load_image(uploaded_photo)
36
  elif camera_photo:
 
2
  import torch
3
  from PIL import Image
4
  from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer
 
 
 
5
  #pickle.load(open('energy_model.pkl', 'rb'))
6
  #vocab = np.load('w2i.p', allow_pickle=True)
7
  print("="*150)
 
28
  if choice == 'Caption':
29
  #st.subheader("Detection")
30
  if st.session_state["photo"]=="done":
31
+ model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
32
+ feature_extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
33
+ tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
34
  if uploaded_photo:
35
  our_image= load_image(uploaded_photo)
36
  elif camera_photo: