Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,9 +2,6 @@ import streamlit as st
|
|
2 |
import torch
|
3 |
from PIL import Image
|
4 |
from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer
|
5 |
-
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
6 |
-
feature_extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
7 |
-
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
8 |
#pickle.load(open('energy_model.pkl', 'rb'))
|
9 |
#vocab = np.load('w2i.p', allow_pickle=True)
|
10 |
print("="*150)
|
@@ -31,6 +28,9 @@ camera_photo = c2.camera_input("Take a photo", on_change=change_photo_state)
|
|
31 |
if choice == 'Caption':
|
32 |
#st.subheader("Detection")
|
33 |
if st.session_state["photo"]=="done":
|
|
|
|
|
|
|
34 |
if uploaded_photo:
|
35 |
our_image= load_image(uploaded_photo)
|
36 |
elif camera_photo:
|
|
|
2 |
import torch
|
3 |
from PIL import Image
|
4 |
from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer
|
|
|
|
|
|
|
5 |
#pickle.load(open('energy_model.pkl', 'rb'))
|
6 |
#vocab = np.load('w2i.p', allow_pickle=True)
|
7 |
print("="*150)
|
|
|
28 |
if choice == 'Caption':
|
29 |
#st.subheader("Detection")
|
30 |
if st.session_state["photo"]=="done":
|
31 |
+
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
32 |
+
feature_extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
33 |
+
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
34 |
if uploaded_photo:
|
35 |
our_image= load_image(uploaded_photo)
|
36 |
elif camera_photo:
|