Soumen commited on
Commit
c850a16
·
1 Parent(s): 1fc1aca

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -7,9 +7,6 @@ from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTok
7
  print("="*150)
8
  print("MODEL LOADED")
9
  st.title("img_captioning_app")
10
- model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
11
- feature_extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
12
- tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
13
  #st.text("Build with Streamlit and OpenCV")
14
  if "photo" not in st.session_state:
15
  st.session_state["photo"]="not done"
@@ -28,6 +25,9 @@ activities = ["Caption","About"]
28
  choice = st.sidebar.selectbox("Select Activty",activities)
29
  uploaded_photo = c2.file_uploader("Upload Image",type=['jpg','png','jpeg'], on_change=change_photo_state)
30
  camera_photo = c2.camera_input("Take a photo", on_change=change_photo_state)
 
 
 
31
  if choice == 'Caption':
32
  #st.subheader("Detection")
33
  if st.session_state["photo"]=="done":
@@ -54,5 +54,5 @@ if choice == 'Caption':
54
  st.success(predict_step(our_image))
55
  elif choice == 'About':
56
  st.subheader("About Image Captioning App")
57
- st.markdown("Built with Streamlit by [Soumen Sarker](https://soumen-sarker-personal-site.streamlit.app/)")
58
  st.markdown("Demo applicaton of the following model [credit](https://huggingface.co/nlpconnect/vit-gpt2-image-captioning/)")
 
7
  print("="*150)
8
  print("MODEL LOADED")
9
  st.title("img_captioning_app")
 
 
 
10
  #st.text("Build with Streamlit and OpenCV")
11
  if "photo" not in st.session_state:
12
  st.session_state["photo"]="not done"
 
25
  choice = st.sidebar.selectbox("Select Activty",activities)
26
  uploaded_photo = c2.file_uploader("Upload Image",type=['jpg','png','jpeg'], on_change=change_photo_state)
27
  camera_photo = c2.camera_input("Take a photo", on_change=change_photo_state)
28
+ model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
29
+ feature_extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
30
+ tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
31
  if choice == 'Caption':
32
  #st.subheader("Detection")
33
  if st.session_state["photo"]=="done":
 
54
  st.success(predict_step(our_image))
55
  elif choice == 'About':
56
  st.subheader("About Image Captioning App")
57
+ st.markdown("Built with Streamlit by [Soumen Sarker](https://soumen-sarker-personal-website.streamlit.app/)")
58
  st.markdown("Demo applicaton of the following model [credit](https://huggingface.co/nlpconnect/vit-gpt2-image-captioning/)")