import streamlit as st import torch from PIL import Image from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer #pickle.load(open('energy_model.pkl', 'rb')) #vocab = np.load('w2i.p', allow_pickle=True) st.title("Image_Captioning_App") @st.experimental_singleton def load_models(): model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning") feature_extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning") tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning") return model, feature_extractor, tokenizer model, feature_extractor, tokenizer = load_models() #st.text("Build with Streamlit and OpenCV") if "photo" not in st.session_state: st.session_state["photo"]="not done" c2, c3 = st.columns([2,1]) def change_photo_state(): st.session_state["photo"]="done" @st.cache def load_image(img): im = Image.open(img) return im uploaded_photo = c2.file_uploader("Upload Image",type=['jpg','png','jpeg'], on_change=change_photo_state) camera_photo = c2.camera_input("Take a photo", on_change=change_photo_state) #st.subheader("Detection") if st.checkbox("Generate_Caption"): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) max_length = 16 num_beams = 4 gen_kwargs = {"max_length": max_length, "num_beams": num_beams} def predict_step(our_image): if our_image.mode != "RGB": our_image = our_image.convert(mode="RGB") pixel_values = feature_extractor(images=our_image, return_tensors="pt").pixel_values pixel_values = pixel_values.to(device) output_ids = model.generate(pixel_values, **gen_kwargs) preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) preds = [pred.strip() for pred in preds] return preds if st.session_state["photo"]=="done": if uploaded_photo: our_image= load_image(uploaded_photo) elif camera_photo: our_image= load_image(camera_photo) elif uploaded_photo==None and camera_photo==None: our_image= load_image('image.jpg') st.success(predict_step(our_image)) elif st.checkbox("About"): st.subheader("About Image Captioning App") st.markdown("Built with Streamlit by [Soumen Sarker](https://soumen-sarker-personal-website.streamlit.app/)") st.markdown("Demo applicaton of the following model [credit](https://huggingface.co/nlpconnect/vit-gpt2-image-captioning/)")