File size: 12,549 Bytes
c732202
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Check if the settings file with the languages available and able to be loaded"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "import json\n",
    "from pathlib import Path\n",
    "\n",
    "def isSettingsFileAvailable():\n",
    "    current_dir = Path.cwd()\n",
    "    file_path =current_dir.parent /'settings.json'\n",
    "    try:\n",
    "        if file_path.exists() and file_path.is_file():\n",
    "            with file_path.open('r') as file:\n",
    "                settings = json.load(file)\n",
    "                return settings\n",
    "        else:\n",
    "            return \"Settings file is not found\"\n",
    "    except Exception as err:\n",
    "        return \"Issue reading the settings file\"\n",
    "    finally:\n",
    "        if \"file\" in locals() and not file.closed:\n",
    "            file.close()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "If the settings file is present ---> validate the ISO code passed to API is a valid one "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'language_supported': ['en', 'zh-CN', 'zh-TW', 'ms', 'ja', 'kr']}\n"
     ]
    }
   ],
   "source": [
    "value = isSettingsFileAvailable()\n",
    "print(value)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Provide a logging mechanism to handle any errors during the translation process"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "import logging\n",
    "import json\n",
    "\n",
    "# Configure logging\n",
    "logging.basicConfig(level=logging.ERROR,\n",
    "                    format='%(asctime)s %(levelname)s %(message)s',\n",
    "                    handlers=[\n",
    "                        logging.FileHandler(\"../logs/translation_error.log\"),\n",
    "                        logging.StreamHandler()\n",
    "                    ])\n",
    "\n",
    "logger = logging.getLogger()\n",
    "\n",
    "def log_error(error_message):\n",
    "    try:\n",
    "        log_entry = {\n",
    "            \"error_message\": error_message\n",
    "        }\n",
    "        logger.error(json.dumps(log_entry))\n",
    "    except json.JSONDecodeError as json_err:\n",
    "        logger.error(f\"Failed to serialize error message as JSON: {error_message}\")\n",
    "        logger.error(f\"JSON serialization error details: {json_err}\")\n",
    "    except Exception as ex:\n",
    "        logger.error(f\"An error occurred while logging: {str(ex)}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Check if the target language is within the translation list, if yes can proceed with that "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "def isTargetLanguageSupported(target_langcode):\n",
    "    try:\n",
    "        settings_config = isSettingsFileAvailable()\n",
    "        language_config = settings_config.get('language_supported','')\n",
    "        if language_config and target_langcode.lower() in language_config:\n",
    "            return True\n",
    "        else:\n",
    "         log_error(f\"Language ---{target_langcode}--- provided is not supported as per settings\")\n",
    "         return False   \n",
    "    except Exception as ex:\n",
    "       log_error(str(ex))\n",
    "       return False"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "2024-06-25 12:13:45,428 ERROR {\"error_message\": \"Language ---zh-CN--- provided is not supported as per settings\"}\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "False\n"
     ]
    }
   ],
   "source": [
    "print(isTargetLanguageSupported('zh-CN'))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "After this basic check ups, lets start with the actual translation process"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "%pip install -q deep_translator "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "from deep_translator import GoogleTranslator"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "def translate_text_usingGoogleTranslator(text, language):\n",
    "    try:\n",
    "        isLanguageSupported = isTargetLanguageSupported(language)\n",
    "        if isLanguageSupported:\n",
    "            translated_text = GoogleTranslator(source='auto', target=language).translate(text)\n",
    "            return translated_text\n",
    "        else:\n",
    "            return False\n",
    "    except Exception as ex:\n",
    "        log_error(str(ex))\n",
    "        return False"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "2024-06-25 12:14:23,295 ERROR {\"error_message\": \"Language ---zh-CN--- provided is not supported as per settings\"}\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "False\n"
     ]
    }
   ],
   "source": [
    "print(translate_text_usingGoogleTranslator('Machine learning.','zh-CN'))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Calculate the BLEU score - THIs WILL BE CALCULATED BETWEEN TRANSLATED TEXT and a REFERENCE TEXT(GENERATED BY MS translator)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Step 1- Populate the reference text which is from MS translator"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "#rc1 is the release candidate version from the google translate \n",
    "\n",
    "%pip install -q googletrans==4.0.0-rc1"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Once the source language is there, use MS mymemory provider to populate the reference text"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "from translate import Translator\n",
    "\n",
    "def translate_text_usingMyMemory(text, from_lang, to_lang):\n",
    "    translator = Translator(provider='mymemory', from_lang= from_lang, to_lang=to_lang)\n",
    "    return translator.translate(text)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'我很好'"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "translate_text_usingMyMemory('i am good','en', 'zh') "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Auto-detect the language ---- IF NEEDED"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Detected language: ceb\n"
     ]
    }
   ],
   "source": [
    "from googletrans import Translator\n",
    "\n",
    "def detect_language_with_googletrans(text):\n",
    "    translator = Translator()\n",
    "    detection = translator.detect(text)\n",
    "    return detection.lang\n",
    "\n",
    "# Example usage\n",
    "text = \"naunsa ka dili man ko maayo\"\n",
    "detected_language = detect_language_with_googletrans(text)\n",
    "print(f\"Detected language: {detected_language}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Perform metrics evaluation on how well the translation is used.. Will use BLEU score for that"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 93,
   "metadata": {},
   "outputs": [],
   "source": [
    "#nltk - Natural language toolkit is the library to process for different words\n",
    "#jieba - used for tokenization in Chinese language ONLY as the concept of tokenization works a bit different there \n",
    "%pip install -q nltk jieba"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "BLEU score calculation for Chinese words"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [],
   "source": [
    "import jieba\n",
    "from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction\n",
    "\n",
    "def calculate_bleu_score_usingjieba(reference_text, candidate_text):\n",
    "    # Use jieba to tokenize the sentences\n",
    "    reference_tokens = list(jieba.cut(reference_text))\n",
    "    candidate_tokens = list(jieba.cut(candidate_text))\n",
    "\n",
    "    # Wrap the reference tokens in a nested list\n",
    "    reference = [reference_tokens]\n",
    "    candidate = candidate_tokens\n",
    "\n",
    "    # Calculate BLEU score with smoothing\n",
    "    bleu_score = sentence_bleu(reference, candidate, smoothing_function=SmoothingFunction().method6)\n",
    "    print(bleu_score)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Building prefix dict from the default dictionary ...\n",
      "2024-06-25 09:36:09,429 DEBUG Building prefix dict from the default dictionary ...\n",
      "Loading model from cache C:\\Users\\soumya\\AppData\\Local\\Temp\\jieba.cache\n",
      "2024-06-25 09:36:09,558 DEBUG Loading model from cache C:\\Users\\soumya\\AppData\\Local\\Temp\\jieba.cache\n",
      "Loading model cost 0.820 seconds.\n",
      "2024-06-25 09:36:10,361 DEBUG Loading model cost 0.820 seconds.\n",
      "Prefix dict has been built successfully.\n",
      "2024-06-25 09:36:10,362 DEBUG Prefix dict has been built successfully.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "1.0\n"
     ]
    }
   ],
   "source": [
    "calculate_bleu_score_usingjieba('我很好','我很好')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Calculate BLEU score for other languages such as english, malay etc. \n",
    "Tokenizer used here can be word net tokenizer"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [],
   "source": [
    "from nltk.tokenize import word_tokenize\n",
    "\n",
    "def calculate_bleu_score_usingnltk(reference_text, candidate_text):\n",
    "    reference_tokens = word_tokenize(reference_text.lower())\n",
    "    candidate_tokens = word_tokenize(candidate_text.lower())\n",
    "\n",
    "    print(reference_tokens)\n",
    "    print(candidate_tokens)\n",
    "\n",
    "    # Calculate BLEU score with smoothing\n",
    "    bleu_score = sentence_bleu([reference_tokens], candidate_tokens, smoothing_function=SmoothingFunction().method2)\n",
    "    print(bleu_score)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "['saya', 'baik']\n",
      "['saya', 'baik']\n",
      "0.7071067811865476\n"
     ]
    }
   ],
   "source": [
    "calculate_bleu_score_usingnltk(\"saya baik\",'saya baik')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Questions: \n",
    "\n",
    "1) I have configured the supported languages in settings file ? \n",
    "2) The request will be based on text/per language ?"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.0"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}