Spaces:
Sleeping
Sleeping
File size: 12,549 Bytes
c732202 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Check if the settings file with the languages available and able to be loaded"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"from pathlib import Path\n",
"\n",
"def isSettingsFileAvailable():\n",
" current_dir = Path.cwd()\n",
" file_path =current_dir.parent /'settings.json'\n",
" try:\n",
" if file_path.exists() and file_path.is_file():\n",
" with file_path.open('r') as file:\n",
" settings = json.load(file)\n",
" return settings\n",
" else:\n",
" return \"Settings file is not found\"\n",
" except Exception as err:\n",
" return \"Issue reading the settings file\"\n",
" finally:\n",
" if \"file\" in locals() and not file.closed:\n",
" file.close()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If the settings file is present ---> validate the ISO code passed to API is a valid one "
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'language_supported': ['en', 'zh-CN', 'zh-TW', 'ms', 'ja', 'kr']}\n"
]
}
],
"source": [
"value = isSettingsFileAvailable()\n",
"print(value)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Provide a logging mechanism to handle any errors during the translation process"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"import json\n",
"\n",
"# Configure logging\n",
"logging.basicConfig(level=logging.ERROR,\n",
" format='%(asctime)s %(levelname)s %(message)s',\n",
" handlers=[\n",
" logging.FileHandler(\"../logs/translation_error.log\"),\n",
" logging.StreamHandler()\n",
" ])\n",
"\n",
"logger = logging.getLogger()\n",
"\n",
"def log_error(error_message):\n",
" try:\n",
" log_entry = {\n",
" \"error_message\": error_message\n",
" }\n",
" logger.error(json.dumps(log_entry))\n",
" except json.JSONDecodeError as json_err:\n",
" logger.error(f\"Failed to serialize error message as JSON: {error_message}\")\n",
" logger.error(f\"JSON serialization error details: {json_err}\")\n",
" except Exception as ex:\n",
" logger.error(f\"An error occurred while logging: {str(ex)}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Check if the target language is within the translation list, if yes can proceed with that "
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"def isTargetLanguageSupported(target_langcode):\n",
" try:\n",
" settings_config = isSettingsFileAvailable()\n",
" language_config = settings_config.get('language_supported','')\n",
" if language_config and target_langcode.lower() in language_config:\n",
" return True\n",
" else:\n",
" log_error(f\"Language ---{target_langcode}--- provided is not supported as per settings\")\n",
" return False \n",
" except Exception as ex:\n",
" log_error(str(ex))\n",
" return False"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2024-06-25 12:13:45,428 ERROR {\"error_message\": \"Language ---zh-CN--- provided is not supported as per settings\"}\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"False\n"
]
}
],
"source": [
"print(isTargetLanguageSupported('zh-CN'))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"After this basic check ups, lets start with the actual translation process"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"%pip install -q deep_translator "
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"from deep_translator import GoogleTranslator"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"def translate_text_usingGoogleTranslator(text, language):\n",
" try:\n",
" isLanguageSupported = isTargetLanguageSupported(language)\n",
" if isLanguageSupported:\n",
" translated_text = GoogleTranslator(source='auto', target=language).translate(text)\n",
" return translated_text\n",
" else:\n",
" return False\n",
" except Exception as ex:\n",
" log_error(str(ex))\n",
" return False"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2024-06-25 12:14:23,295 ERROR {\"error_message\": \"Language ---zh-CN--- provided is not supported as per settings\"}\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"False\n"
]
}
],
"source": [
"print(translate_text_usingGoogleTranslator('Machine learning.','zh-CN'))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Calculate the BLEU score - THIs WILL BE CALCULATED BETWEEN TRANSLATED TEXT and a REFERENCE TEXT(GENERATED BY MS translator)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Step 1- Populate the reference text which is from MS translator"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"#rc1 is the release candidate version from the google translate \n",
"\n",
"%pip install -q googletrans==4.0.0-rc1"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Once the source language is there, use MS mymemory provider to populate the reference text"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"from translate import Translator\n",
"\n",
"def translate_text_usingMyMemory(text, from_lang, to_lang):\n",
" translator = Translator(provider='mymemory', from_lang= from_lang, to_lang=to_lang)\n",
" return translator.translate(text)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'我很好'"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"translate_text_usingMyMemory('i am good','en', 'zh') "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Auto-detect the language ---- IF NEEDED"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Detected language: ceb\n"
]
}
],
"source": [
"from googletrans import Translator\n",
"\n",
"def detect_language_with_googletrans(text):\n",
" translator = Translator()\n",
" detection = translator.detect(text)\n",
" return detection.lang\n",
"\n",
"# Example usage\n",
"text = \"naunsa ka dili man ko maayo\"\n",
"detected_language = detect_language_with_googletrans(text)\n",
"print(f\"Detected language: {detected_language}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Perform metrics evaluation on how well the translation is used.. Will use BLEU score for that"
]
},
{
"cell_type": "code",
"execution_count": 93,
"metadata": {},
"outputs": [],
"source": [
"#nltk - Natural language toolkit is the library to process for different words\n",
"#jieba - used for tokenization in Chinese language ONLY as the concept of tokenization works a bit different there \n",
"%pip install -q nltk jieba"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"BLEU score calculation for Chinese words"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"import jieba\n",
"from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction\n",
"\n",
"def calculate_bleu_score_usingjieba(reference_text, candidate_text):\n",
" # Use jieba to tokenize the sentences\n",
" reference_tokens = list(jieba.cut(reference_text))\n",
" candidate_tokens = list(jieba.cut(candidate_text))\n",
"\n",
" # Wrap the reference tokens in a nested list\n",
" reference = [reference_tokens]\n",
" candidate = candidate_tokens\n",
"\n",
" # Calculate BLEU score with smoothing\n",
" bleu_score = sentence_bleu(reference, candidate, smoothing_function=SmoothingFunction().method6)\n",
" print(bleu_score)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Building prefix dict from the default dictionary ...\n",
"2024-06-25 09:36:09,429 DEBUG Building prefix dict from the default dictionary ...\n",
"Loading model from cache C:\\Users\\soumya\\AppData\\Local\\Temp\\jieba.cache\n",
"2024-06-25 09:36:09,558 DEBUG Loading model from cache C:\\Users\\soumya\\AppData\\Local\\Temp\\jieba.cache\n",
"Loading model cost 0.820 seconds.\n",
"2024-06-25 09:36:10,361 DEBUG Loading model cost 0.820 seconds.\n",
"Prefix dict has been built successfully.\n",
"2024-06-25 09:36:10,362 DEBUG Prefix dict has been built successfully.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"1.0\n"
]
}
],
"source": [
"calculate_bleu_score_usingjieba('我很好','我很好')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Calculate BLEU score for other languages such as english, malay etc. \n",
"Tokenizer used here can be word net tokenizer"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"from nltk.tokenize import word_tokenize\n",
"\n",
"def calculate_bleu_score_usingnltk(reference_text, candidate_text):\n",
" reference_tokens = word_tokenize(reference_text.lower())\n",
" candidate_tokens = word_tokenize(candidate_text.lower())\n",
"\n",
" print(reference_tokens)\n",
" print(candidate_tokens)\n",
"\n",
" # Calculate BLEU score with smoothing\n",
" bleu_score = sentence_bleu([reference_tokens], candidate_tokens, smoothing_function=SmoothingFunction().method2)\n",
" print(bleu_score)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['saya', 'baik']\n",
"['saya', 'baik']\n",
"0.7071067811865476\n"
]
}
],
"source": [
"calculate_bleu_score_usingnltk(\"saya baik\",'saya baik')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Questions: \n",
"\n",
"1) I have configured the supported languages in settings file ? \n",
"2) The request will be based on text/per language ?"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.0"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|