Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
import random | |
import torch | |
from diffusers import DiffusionPipeline | |
# Check for GPU availability | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
# Load your DiffusionPipeline model | |
model_repo_id = "stabilityai/sdxl-turbo" | |
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) | |
pipe = pipe.to(device) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
# Define the custom model inference function | |
def custom_infer( | |
prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps | |
): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator, | |
).images[0] | |
return image, seed | |
# Gradio interface for custom model | |
def custom_model_ui(): | |
with gr.Blocks() as custom_demo: | |
gr.Markdown("## Needs a GPU for best performance and it is highly customizable.\n ## stabilityai/sdxl-turbo") | |
#gr.Markdown('<p style="font-size: 30px;">Needs a GPU for best performance and it is highly customizable.</p>\n<p style="font-size: 50px; font-weight: bold;">stabilityai/sdxl-turbo</p>', unsafe_allow_html=True) | |
with gr.Row(): | |
prompt = gr.Text(label="Prompt") | |
run_button = gr.Button("Generate") | |
result = gr.Image(label="Generated Image") | |
negative_prompt = gr.Text(label="Negative Prompt", placeholder="Optional") | |
seed = gr.Slider(0, MAX_SEED, label="Seed", step=1, value=0) | |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
width = gr.Slider(256, MAX_IMAGE_SIZE, step=32, value=1024, label="Width") | |
height = gr.Slider(256, MAX_IMAGE_SIZE, step=32, value=1024, label="Height") | |
guidance_scale = gr.Slider(0, 10, step=0.1, value=7.5, label="Guidance Scale") | |
num_inference_steps = gr.Slider(1, 50, step=1, value=30, label="Inference Steps") | |
run_button.click( | |
custom_infer, | |
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
outputs=[result, seed], | |
) | |
return custom_demo | |
# Preloaded Gradio model | |
def preloaded_model_ui(): | |
with gr.Blocks() as preloaded_demo: | |
gr.Markdown("## Works well on CPU and it is faster.") | |
preloaded_demo = gr.load("models/ZB-Tech/Text-to-Image") | |
return preloaded_demo | |
# Combine both interfaces in tabs | |
with gr.Blocks() as demo: | |
with gr.Tab("Quick Image Generation"): | |
preloaded_ui = preloaded_model_ui() | |
with gr.Tab("Advanced Image Generation"): | |
custom_ui = custom_model_ui() | |
if __name__ == "__main__": | |
demo.launch() | |