Spaces:
Sleeping
Sleeping
import gradio as gr | |
import random | |
import torch | |
from diffusers import DiffusionPipeline | |
# Device setup | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model_repo_id_turbo = "stabilityai/sdxl-turbo" # Stability AI Model | |
pipe_turbo = DiffusionPipeline.from_pretrained(model_repo_id_turbo, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32).to(device) | |
# Placeholder for ZB-Tech model | |
def load_zb_model(): | |
return gr.Interface.load("models/ZB-Tech/Text-to-Image") | |
# Inference function | |
def custom_infer( | |
model_choice, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps | |
): | |
# Load the selected model | |
if model_choice == "Faster image generation (suitable for CPUs)": | |
model = load_zb_model() | |
return model(prompt) | |
else: | |
default_negative_prompt = "no watermark, hezzy, blurry" | |
combined_negative_prompt = f"{default_negative_prompt}, {negative_prompt}" if negative_prompt else default_negative_prompt | |
if randomize_seed: | |
seed = random.randint(0, np.iinfo(np.int32).max) | |
generator = torch.Generator().manual_seed(seed) | |
image = pipe_turbo( | |
prompt=prompt, | |
negative_prompt=combined_negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator, | |
).images[0] | |
return image, seed | |
# CSS for centering UI | |
css = """ | |
#col-container { | |
display: flex; | |
flex-direction: column; | |
align-items: center; | |
justify-content: center; | |
text-align: center; | |
margin: 0 auto; | |
} | |
""" | |
# Gradio app | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
# App name and description | |
gr.Markdown( | |
""" | |
# AI-Powered Text-to-Image Generator | |
*Generate stunning images from text prompts using advanced AI models.* | |
""" | |
) | |
# Dropdown for model selection | |
model_choice = gr.Dropdown( | |
label="Select Model", | |
choices=[ | |
"Faster image generation (suitable for CPUs)", | |
"More customizable option (slower, suitable for GPUs)" | |
], | |
value="Faster image generation (suitable for CPUs)", | |
) | |
# Input section | |
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...") | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Enter a negative prompt here...") | |
seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, value=0) | |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
width = gr.Slider(label="Width", minimum=256, maximum=1024, step=32, value=512) | |
height = gr.Slider(label="Height", minimum=256, maximum=1024, step=32, value=512) | |
guidance_scale = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=10.0, step=0.1, value=7.5) | |
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=25) | |
# Output section | |
result = gr.Image(label="Generated Image", type="pil") | |
gr.Button("Generate").click( | |
custom_infer, | |
inputs=[model_choice, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
outputs=result | |
) | |
# Launch app | |
if __name__ == "__main__": | |
demo.launch() | |