Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,96 +1,66 @@
|
|
1 |
import gradio as gr
|
2 |
-
import random
|
3 |
-
import torch
|
4 |
-
from diffusers import DiffusionPipeline
|
5 |
|
6 |
-
#
|
7 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
-
model_repo_id_turbo = "stabilityai/sdxl-turbo" # Stability AI Model
|
9 |
-
pipe_turbo = DiffusionPipeline.from_pretrained(model_repo_id_turbo, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32).to(device)
|
10 |
-
|
11 |
-
# Placeholder for ZB-Tech model
|
12 |
-
def load_zb_model():
|
13 |
-
return gr.Interface.load("models/ZB-Tech/Text-to-Image")
|
14 |
-
|
15 |
-
# Inference function
|
16 |
-
def custom_infer(
|
17 |
-
model_choice, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps
|
18 |
-
):
|
19 |
-
# Load the selected model
|
20 |
-
if model_choice == "Faster image generation (suitable for CPUs)":
|
21 |
-
model = load_zb_model()
|
22 |
-
return model(prompt)
|
23 |
-
else:
|
24 |
-
default_negative_prompt = "no watermark, hezzy, blurry"
|
25 |
-
combined_negative_prompt = f"{default_negative_prompt}, {negative_prompt}" if negative_prompt else default_negative_prompt
|
26 |
-
|
27 |
-
if randomize_seed:
|
28 |
-
seed = random.randint(0, np.iinfo(np.int32).max)
|
29 |
-
|
30 |
-
generator = torch.Generator().manual_seed(seed)
|
31 |
-
image = pipe_turbo(
|
32 |
-
prompt=prompt,
|
33 |
-
negative_prompt=combined_negative_prompt,
|
34 |
-
guidance_scale=guidance_scale,
|
35 |
-
num_inference_steps=num_inference_steps,
|
36 |
-
width=width,
|
37 |
-
height=height,
|
38 |
-
generator=generator,
|
39 |
-
).images[0]
|
40 |
-
return image, seed
|
41 |
-
|
42 |
-
# CSS for centering UI
|
43 |
css = """
|
44 |
#col-container {
|
45 |
-
display: flex;
|
46 |
-
flex-direction: column;
|
47 |
-
align-items: center;
|
48 |
-
justify-content: center;
|
49 |
-
text-align: center;
|
50 |
margin: 0 auto;
|
|
|
|
|
51 |
}
|
52 |
"""
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
# Gradio app
|
55 |
with gr.Blocks(css=css) as demo:
|
56 |
with gr.Column(elem_id="col-container"):
|
57 |
-
#
|
58 |
gr.Markdown(
|
59 |
"""
|
60 |
# AI-Powered Text-to-Image Generator
|
61 |
-
*Generate stunning images from text prompts using
|
62 |
"""
|
63 |
)
|
64 |
|
65 |
-
#
|
66 |
-
|
67 |
-
label="
|
68 |
-
|
69 |
-
|
70 |
-
"More customizable option (slower, suitable for GPUs)"
|
71 |
-
],
|
72 |
-
value="Faster image generation (suitable for CPUs)",
|
73 |
)
|
74 |
|
75 |
-
# Input
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
guidance_scale = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=10.0, step=0.1, value=7.5)
|
84 |
-
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=25)
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
)
|
93 |
|
94 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
if __name__ == "__main__":
|
96 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
|
3 |
+
# CSS for aligning the UI elements in the middle
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
css = """
|
5 |
#col-container {
|
|
|
|
|
|
|
|
|
|
|
6 |
margin: 0 auto;
|
7 |
+
max-width: 640px;
|
8 |
+
text-align: center;
|
9 |
}
|
10 |
"""
|
11 |
|
12 |
+
# Maximum image size
|
13 |
+
MAX_IMAGE_SIZE = 1024
|
14 |
+
|
15 |
+
# Load the ZB-Tech/Text-to-Image model
|
16 |
+
def infer(prompt, height, width):
|
17 |
+
model = gr.Interface.load("models/ZB-Tech/Text-to-Image")
|
18 |
+
return model(prompt, height=height, width=width)
|
19 |
+
|
20 |
# Gradio app
|
21 |
with gr.Blocks(css=css) as demo:
|
22 |
with gr.Column(elem_id="col-container"):
|
23 |
+
# Title and description
|
24 |
gr.Markdown(
|
25 |
"""
|
26 |
# AI-Powered Text-to-Image Generator
|
27 |
+
*Generate stunning images from text prompts using the ZB-Tech/Text-to-Image model.*
|
28 |
"""
|
29 |
)
|
30 |
|
31 |
+
# Input: Prompt
|
32 |
+
prompt = gr.Textbox(
|
33 |
+
label="Prompt",
|
34 |
+
placeholder="Enter your prompt here...",
|
35 |
+
lines=2,
|
|
|
|
|
|
|
36 |
)
|
37 |
|
38 |
+
# Input: Height and Width sliders
|
39 |
+
height = gr.Slider(
|
40 |
+
label="Height",
|
41 |
+
minimum=256,
|
42 |
+
maximum=MAX_IMAGE_SIZE,
|
43 |
+
step=32,
|
44 |
+
value=1024,
|
45 |
+
)
|
|
|
|
|
46 |
|
47 |
+
width = gr.Slider(
|
48 |
+
label="Width",
|
49 |
+
minimum=256,
|
50 |
+
maximum=MAX_IMAGE_SIZE,
|
51 |
+
step=32,
|
52 |
+
value=1024,
|
53 |
)
|
54 |
|
55 |
+
# Output: Generated Image
|
56 |
+
result = gr.Image(label="Generated Image", type="pil")
|
57 |
+
|
58 |
+
# Generate Button
|
59 |
+
generate_button = gr.Button("Generate")
|
60 |
+
|
61 |
+
# Button action: Call infer function
|
62 |
+
generate_button.click(infer, inputs=[prompt, height, width], outputs=result)
|
63 |
+
|
64 |
+
# Launch the app
|
65 |
if __name__ == "__main__":
|
66 |
demo.launch()
|