|
"""This script defines the visualizer for Deep3DFaceRecon_pytorch
|
|
"""
|
|
|
|
import numpy as np
|
|
import os
|
|
import sys
|
|
import ntpath
|
|
import time
|
|
from . import util, html
|
|
from subprocess import Popen, PIPE
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
def save_images(webpage, visuals, image_path, aspect_ratio=1.0, width=256):
|
|
"""Save images to the disk.
|
|
|
|
Parameters:
|
|
webpage (the HTML class) -- the HTML webpage class that stores these imaegs (see html.py for more details)
|
|
visuals (OrderedDict) -- an ordered dictionary that stores (name, images (either tensor or numpy) ) pairs
|
|
image_path (str) -- the string is used to create image paths
|
|
aspect_ratio (float) -- the aspect ratio of saved images
|
|
width (int) -- the images will be resized to width x width
|
|
|
|
This function will save images stored in 'visuals' to the HTML file specified by 'webpage'.
|
|
"""
|
|
image_dir = webpage.get_image_dir()
|
|
short_path = ntpath.basename(image_path[0])
|
|
name = os.path.splitext(short_path)[0]
|
|
|
|
webpage.add_header(name)
|
|
ims, txts, links = [], [], []
|
|
|
|
for label, im_data in visuals.items():
|
|
im = util.tensor2im(im_data)
|
|
image_name = '%s/%s.png' % (label, name)
|
|
os.makedirs(os.path.join(image_dir, label), exist_ok=True)
|
|
save_path = os.path.join(image_dir, image_name)
|
|
util.save_image(im, save_path, aspect_ratio=aspect_ratio)
|
|
ims.append(image_name)
|
|
txts.append(label)
|
|
links.append(image_name)
|
|
webpage.add_images(ims, txts, links, width=width)
|
|
|
|
|
|
class Visualizer():
|
|
"""This class includes several functions that can display/save images and print/save logging information.
|
|
|
|
It uses a Python library tensprboardX for display, and a Python library 'dominate' (wrapped in 'HTML') for creating HTML files with images.
|
|
"""
|
|
|
|
def __init__(self, opt):
|
|
"""Initialize the Visualizer class
|
|
|
|
Parameters:
|
|
opt -- stores all the experiment flags; needs to be a subclass of BaseOptions
|
|
Step 1: Cache the training/test options
|
|
Step 2: create a tensorboard writer
|
|
Step 3: create an HTML object for saveing HTML filters
|
|
Step 4: create a logging file to store training losses
|
|
"""
|
|
self.opt = opt
|
|
self.use_html = opt.isTrain and not opt.no_html
|
|
self.writer = SummaryWriter(os.path.join(opt.checkpoints_dir, 'logs', opt.name))
|
|
self.win_size = opt.display_winsize
|
|
self.name = opt.name
|
|
self.saved = False
|
|
if self.use_html:
|
|
self.web_dir = os.path.join(opt.checkpoints_dir, opt.name, 'web')
|
|
self.img_dir = os.path.join(self.web_dir, 'images')
|
|
print('create web directory %s...' % self.web_dir)
|
|
util.mkdirs([self.web_dir, self.img_dir])
|
|
|
|
self.log_name = os.path.join(opt.checkpoints_dir, opt.name, 'loss_log.txt')
|
|
with open(self.log_name, "a") as log_file:
|
|
now = time.strftime("%c")
|
|
log_file.write('================ Training Loss (%s) ================\n' % now)
|
|
|
|
def reset(self):
|
|
"""Reset the self.saved status"""
|
|
self.saved = False
|
|
|
|
|
|
def display_current_results(self, visuals, total_iters, epoch, save_result):
|
|
"""Display current results on tensorboad; save current results to an HTML file.
|
|
|
|
Parameters:
|
|
visuals (OrderedDict) - - dictionary of images to display or save
|
|
total_iters (int) -- total iterations
|
|
epoch (int) - - the current epoch
|
|
save_result (bool) - - if save the current results to an HTML file
|
|
"""
|
|
for label, image in visuals.items():
|
|
self.writer.add_image(label, util.tensor2im(image), total_iters, dataformats='HWC')
|
|
|
|
if self.use_html and (save_result or not self.saved):
|
|
self.saved = True
|
|
|
|
for label, image in visuals.items():
|
|
image_numpy = util.tensor2im(image)
|
|
img_path = os.path.join(self.img_dir, 'epoch%.3d_%s.png' % (epoch, label))
|
|
util.save_image(image_numpy, img_path)
|
|
|
|
|
|
webpage = html.HTML(self.web_dir, 'Experiment name = %s' % self.name, refresh=0)
|
|
for n in range(epoch, 0, -1):
|
|
webpage.add_header('epoch [%d]' % n)
|
|
ims, txts, links = [], [], []
|
|
|
|
for label, image_numpy in visuals.items():
|
|
image_numpy = util.tensor2im(image)
|
|
img_path = 'epoch%.3d_%s.png' % (n, label)
|
|
ims.append(img_path)
|
|
txts.append(label)
|
|
links.append(img_path)
|
|
webpage.add_images(ims, txts, links, width=self.win_size)
|
|
webpage.save()
|
|
|
|
def plot_current_losses(self, total_iters, losses):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for name, value in losses.items():
|
|
self.writer.add_scalar(name, value, total_iters)
|
|
|
|
|
|
def print_current_losses(self, epoch, iters, losses, t_comp, t_data):
|
|
"""print current losses on console; also save the losses to the disk
|
|
|
|
Parameters:
|
|
epoch (int) -- current epoch
|
|
iters (int) -- current training iteration during this epoch (reset to 0 at the end of every epoch)
|
|
losses (OrderedDict) -- training losses stored in the format of (name, float) pairs
|
|
t_comp (float) -- computational time per data point (normalized by batch_size)
|
|
t_data (float) -- data loading time per data point (normalized by batch_size)
|
|
"""
|
|
message = '(epoch: %d, iters: %d, time: %.3f, data: %.3f) ' % (epoch, iters, t_comp, t_data)
|
|
for k, v in losses.items():
|
|
message += '%s: %.3f ' % (k, v)
|
|
|
|
print(message)
|
|
with open(self.log_name, "a") as log_file:
|
|
log_file.write('%s\n' % message)
|
|
|
|
|
|
class MyVisualizer:
|
|
def __init__(self, opt):
|
|
"""Initialize the Visualizer class
|
|
|
|
Parameters:
|
|
opt -- stores all the experiment flags; needs to be a subclass of BaseOptions
|
|
Step 1: Cache the training/test options
|
|
Step 2: create a tensorboard writer
|
|
Step 3: create an HTML object for saveing HTML filters
|
|
Step 4: create a logging file to store training losses
|
|
"""
|
|
self.opt = opt
|
|
self.name = opt.name
|
|
self.img_dir = os.path.join(opt.checkpoints_dir, opt.name, 'results')
|
|
|
|
if opt.phase != 'test':
|
|
self.writer = SummaryWriter(os.path.join(opt.checkpoints_dir, opt.name, 'logs'))
|
|
|
|
self.log_name = os.path.join(opt.checkpoints_dir, opt.name, 'loss_log.txt')
|
|
with open(self.log_name, "a") as log_file:
|
|
now = time.strftime("%c")
|
|
log_file.write('================ Training Loss (%s) ================\n' % now)
|
|
|
|
|
|
def display_current_results(self, visuals, total_iters, epoch, dataset='train', save_results=False, count=0, name=None,
|
|
add_image=True):
|
|
"""Display current results on tensorboad; save current results to an HTML file.
|
|
|
|
Parameters:
|
|
visuals (OrderedDict) - - dictionary of images to display or save
|
|
total_iters (int) -- total iterations
|
|
epoch (int) - - the current epoch
|
|
dataset (str) - - 'train' or 'val' or 'test'
|
|
"""
|
|
|
|
|
|
for label, image in visuals.items():
|
|
for i in range(image.shape[0]):
|
|
image_numpy = util.tensor2im(image[i])
|
|
if add_image:
|
|
self.writer.add_image(label + '%s_%02d'%(dataset, i + count),
|
|
image_numpy, total_iters, dataformats='HWC')
|
|
|
|
if save_results:
|
|
save_path = os.path.join(self.img_dir, dataset, 'epoch_%s_%06d'%(epoch, total_iters))
|
|
if not os.path.isdir(save_path):
|
|
os.makedirs(save_path)
|
|
|
|
if name is not None:
|
|
img_path = os.path.join(save_path, '%s.png' % name)
|
|
else:
|
|
img_path = os.path.join(save_path, '%s_%03d.png' % (label, i + count))
|
|
util.save_image(image_numpy, img_path)
|
|
|
|
|
|
def plot_current_losses(self, total_iters, losses, dataset='train'):
|
|
for name, value in losses.items():
|
|
self.writer.add_scalar(name + '/%s'%dataset, value, total_iters)
|
|
|
|
|
|
def print_current_losses(self, epoch, iters, losses, t_comp, t_data, dataset='train'):
|
|
"""print current losses on console; also save the losses to the disk
|
|
|
|
Parameters:
|
|
epoch (int) -- current epoch
|
|
iters (int) -- current training iteration during this epoch (reset to 0 at the end of every epoch)
|
|
losses (OrderedDict) -- training losses stored in the format of (name, float) pairs
|
|
t_comp (float) -- computational time per data point (normalized by batch_size)
|
|
t_data (float) -- data loading time per data point (normalized by batch_size)
|
|
"""
|
|
message = '(dataset: %s, epoch: %d, iters: %d, time: %.3f, data: %.3f) ' % (
|
|
dataset, epoch, iters, t_comp, t_data)
|
|
for k, v in losses.items():
|
|
message += '%s: %.3f ' % (k, v)
|
|
|
|
print(message)
|
|
with open(self.log_name, "a") as log_file:
|
|
log_file.write('%s\n' % message)
|
|
|