|
import torch
|
|
from torch import nn
|
|
|
|
assert torch.__version__ >= "1.8.1"
|
|
from torch.utils.checkpoint import checkpoint_sequential
|
|
|
|
__all__ = ['iresnet2060']
|
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
|
|
"""3x3 convolution with padding"""
|
|
return nn.Conv2d(in_planes,
|
|
out_planes,
|
|
kernel_size=3,
|
|
stride=stride,
|
|
padding=dilation,
|
|
groups=groups,
|
|
bias=False,
|
|
dilation=dilation)
|
|
|
|
|
|
def conv1x1(in_planes, out_planes, stride=1):
|
|
"""1x1 convolution"""
|
|
return nn.Conv2d(in_planes,
|
|
out_planes,
|
|
kernel_size=1,
|
|
stride=stride,
|
|
bias=False)
|
|
|
|
|
|
class IBasicBlock(nn.Module):
|
|
expansion = 1
|
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None,
|
|
groups=1, base_width=64, dilation=1):
|
|
super(IBasicBlock, self).__init__()
|
|
if groups != 1 or base_width != 64:
|
|
raise ValueError('BasicBlock only supports groups=1 and base_width=64')
|
|
if dilation > 1:
|
|
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
|
|
self.bn1 = nn.BatchNorm2d(inplanes, eps=1e-05, )
|
|
self.conv1 = conv3x3(inplanes, planes)
|
|
self.bn2 = nn.BatchNorm2d(planes, eps=1e-05, )
|
|
self.prelu = nn.PReLU(planes)
|
|
self.conv2 = conv3x3(planes, planes, stride)
|
|
self.bn3 = nn.BatchNorm2d(planes, eps=1e-05, )
|
|
self.downsample = downsample
|
|
self.stride = stride
|
|
|
|
def forward(self, x):
|
|
identity = x
|
|
out = self.bn1(x)
|
|
out = self.conv1(out)
|
|
out = self.bn2(out)
|
|
out = self.prelu(out)
|
|
out = self.conv2(out)
|
|
out = self.bn3(out)
|
|
if self.downsample is not None:
|
|
identity = self.downsample(x)
|
|
out += identity
|
|
return out
|
|
|
|
|
|
class IResNet(nn.Module):
|
|
fc_scale = 7 * 7
|
|
|
|
def __init__(self,
|
|
block, layers, dropout=0, num_features=512, zero_init_residual=False,
|
|
groups=1, width_per_group=64, replace_stride_with_dilation=None, fp16=False):
|
|
super(IResNet, self).__init__()
|
|
self.fp16 = fp16
|
|
self.inplanes = 64
|
|
self.dilation = 1
|
|
if replace_stride_with_dilation is None:
|
|
replace_stride_with_dilation = [False, False, False]
|
|
if len(replace_stride_with_dilation) != 3:
|
|
raise ValueError("replace_stride_with_dilation should be None "
|
|
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))
|
|
self.groups = groups
|
|
self.base_width = width_per_group
|
|
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False)
|
|
self.bn1 = nn.BatchNorm2d(self.inplanes, eps=1e-05)
|
|
self.prelu = nn.PReLU(self.inplanes)
|
|
self.layer1 = self._make_layer(block, 64, layers[0], stride=2)
|
|
self.layer2 = self._make_layer(block,
|
|
128,
|
|
layers[1],
|
|
stride=2,
|
|
dilate=replace_stride_with_dilation[0])
|
|
self.layer3 = self._make_layer(block,
|
|
256,
|
|
layers[2],
|
|
stride=2,
|
|
dilate=replace_stride_with_dilation[1])
|
|
self.layer4 = self._make_layer(block,
|
|
512,
|
|
layers[3],
|
|
stride=2,
|
|
dilate=replace_stride_with_dilation[2])
|
|
self.bn2 = nn.BatchNorm2d(512 * block.expansion, eps=1e-05, )
|
|
self.dropout = nn.Dropout(p=dropout, inplace=True)
|
|
self.fc = nn.Linear(512 * block.expansion * self.fc_scale, num_features)
|
|
self.features = nn.BatchNorm1d(num_features, eps=1e-05)
|
|
nn.init.constant_(self.features.weight, 1.0)
|
|
self.features.weight.requires_grad = False
|
|
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
nn.init.normal_(m.weight, 0, 0.1)
|
|
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
|
|
nn.init.constant_(m.weight, 1)
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
if zero_init_residual:
|
|
for m in self.modules():
|
|
if isinstance(m, IBasicBlock):
|
|
nn.init.constant_(m.bn2.weight, 0)
|
|
|
|
def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
|
|
downsample = None
|
|
previous_dilation = self.dilation
|
|
if dilate:
|
|
self.dilation *= stride
|
|
stride = 1
|
|
if stride != 1 or self.inplanes != planes * block.expansion:
|
|
downsample = nn.Sequential(
|
|
conv1x1(self.inplanes, planes * block.expansion, stride),
|
|
nn.BatchNorm2d(planes * block.expansion, eps=1e-05, ),
|
|
)
|
|
layers = []
|
|
layers.append(
|
|
block(self.inplanes, planes, stride, downsample, self.groups,
|
|
self.base_width, previous_dilation))
|
|
self.inplanes = planes * block.expansion
|
|
for _ in range(1, blocks):
|
|
layers.append(
|
|
block(self.inplanes,
|
|
planes,
|
|
groups=self.groups,
|
|
base_width=self.base_width,
|
|
dilation=self.dilation))
|
|
|
|
return nn.Sequential(*layers)
|
|
|
|
def checkpoint(self, func, num_seg, x):
|
|
if self.training:
|
|
return checkpoint_sequential(func, num_seg, x)
|
|
else:
|
|
return func(x)
|
|
|
|
def forward(self, x):
|
|
with torch.cuda.amp.autocast(self.fp16):
|
|
x = self.conv1(x)
|
|
x = self.bn1(x)
|
|
x = self.prelu(x)
|
|
x = self.layer1(x)
|
|
x = self.checkpoint(self.layer2, 20, x)
|
|
x = self.checkpoint(self.layer3, 100, x)
|
|
x = self.layer4(x)
|
|
x = self.bn2(x)
|
|
x = torch.flatten(x, 1)
|
|
x = self.dropout(x)
|
|
x = self.fc(x.float() if self.fp16 else x)
|
|
x = self.features(x)
|
|
return x
|
|
|
|
|
|
def _iresnet(arch, block, layers, pretrained, progress, **kwargs):
|
|
model = IResNet(block, layers, **kwargs)
|
|
if pretrained:
|
|
raise ValueError()
|
|
return model
|
|
|
|
|
|
def iresnet2060(pretrained=False, progress=True, **kwargs):
|
|
return _iresnet('iresnet2060', IBasicBlock, [3, 128, 1024 - 128, 3], pretrained, progress, **kwargs)
|
|
|