|
import numpy as np
|
|
import onnx
|
|
import torch
|
|
|
|
|
|
def convert_onnx(net, path_module, output, opset=11, simplify=False):
|
|
assert isinstance(net, torch.nn.Module)
|
|
img = np.random.randint(0, 255, size=(112, 112, 3), dtype=np.int32)
|
|
img = img.astype(np.float)
|
|
img = (img / 255. - 0.5) / 0.5
|
|
img = img.transpose((2, 0, 1))
|
|
img = torch.from_numpy(img).unsqueeze(0).float()
|
|
|
|
weight = torch.load(path_module)
|
|
net.load_state_dict(weight)
|
|
net.eval()
|
|
torch.onnx.export(net, img, output, keep_initializers_as_inputs=False, verbose=False, opset_version=opset)
|
|
model = onnx.load(output)
|
|
graph = model.graph
|
|
graph.input[0].type.tensor_type.shape.dim[0].dim_param = 'None'
|
|
if simplify:
|
|
from onnxsim import simplify
|
|
model, check = simplify(model)
|
|
assert check, "Simplified ONNX model could not be validated"
|
|
onnx.save(model, output)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
import os
|
|
import argparse
|
|
from backbones import get_model
|
|
|
|
parser = argparse.ArgumentParser(description='ArcFace PyTorch to onnx')
|
|
parser.add_argument('input', type=str, help='input backbone.pth file or path')
|
|
parser.add_argument('--output', type=str, default=None, help='output onnx path')
|
|
parser.add_argument('--network', type=str, default=None, help='backbone network')
|
|
parser.add_argument('--simplify', type=bool, default=False, help='onnx simplify')
|
|
args = parser.parse_args()
|
|
input_file = args.input
|
|
if os.path.isdir(input_file):
|
|
input_file = os.path.join(input_file, "backbone.pth")
|
|
assert os.path.exists(input_file)
|
|
model_name = os.path.basename(os.path.dirname(input_file)).lower()
|
|
params = model_name.split("_")
|
|
if len(params) >= 3 and params[1] in ('arcface', 'cosface'):
|
|
if args.network is None:
|
|
args.network = params[2]
|
|
assert args.network is not None
|
|
print(args)
|
|
backbone_onnx = get_model(args.network, dropout=0)
|
|
|
|
output_path = args.output
|
|
if output_path is None:
|
|
output_path = os.path.join(os.path.dirname(__file__), 'onnx')
|
|
if not os.path.exists(output_path):
|
|
os.makedirs(output_path)
|
|
assert os.path.isdir(output_path)
|
|
output_file = os.path.join(output_path, "%s.onnx" % model_name)
|
|
convert_onnx(backbone_onnx, input_file, output_file, simplify=args.simplify)
|
|
|