File size: 30,167 Bytes
e863356 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 |
# pylint: disable=E1101,C0415,W0718,R0801
# scripts/train_stage1.py
"""
This is the main training script for stage 1 of the project.
It imports necessary packages, defines necessary classes and functions, and trains the model using the provided configuration.
The script includes the following classes and functions:
1. Net: A PyTorch model that takes noisy latents, timesteps, reference image latents, face embeddings,
and face masks as input and returns the denoised latents.
3. log_validation: A function that logs the validation information using the given VAE, image encoder,
network, scheduler, accelerator, width, height, and configuration.
4. train_stage1_process: A function that processes the training stage 1 using the given configuration.
The script also includes the necessary imports and a brief description of the purpose of the file.
"""
import argparse
import copy
import logging
import math
import os
import random
import warnings
from datetime import datetime
import cv2
import diffusers
import mlflow
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import DistributedDataParallelKwargs
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
from insightface.app import FaceAnalysis
from omegaconf import OmegaConf
from PIL import Image
from torch import nn
from tqdm.auto import tqdm
from hallo.animate.face_animate_static import StaticPipeline
from hallo.datasets.mask_image import FaceMaskDataset
from hallo.models.face_locator import FaceLocator
from hallo.models.image_proj import ImageProjModel
from hallo.models.mutual_self_attention import ReferenceAttentionControl
from hallo.models.unet_2d_condition import UNet2DConditionModel
from hallo.models.unet_3d import UNet3DConditionModel
from hallo.utils.util import (compute_snr, delete_additional_ckpt,
import_filename, init_output_dir,
load_checkpoint, move_final_checkpoint,
save_checkpoint, seed_everything)
warnings.filterwarnings("ignore")
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.10.0.dev0")
logger = get_logger(__name__, log_level="INFO")
class Net(nn.Module):
"""
The Net class defines a neural network model that combines a reference UNet2DConditionModel,
a denoising UNet3DConditionModel, a face locator, and other components to animate a face in a static image.
Args:
reference_unet (UNet2DConditionModel): The reference UNet2DConditionModel used for face animation.
denoising_unet (UNet3DConditionModel): The denoising UNet3DConditionModel used for face animation.
face_locator (FaceLocator): The face locator model used for face animation.
reference_control_writer: The reference control writer component.
reference_control_reader: The reference control reader component.
imageproj: The image projection model.
Forward method:
noisy_latents (torch.Tensor): The noisy latents tensor.
timesteps (torch.Tensor): The timesteps tensor.
ref_image_latents (torch.Tensor): The reference image latents tensor.
face_emb (torch.Tensor): The face embeddings tensor.
face_mask (torch.Tensor): The face mask tensor.
uncond_fwd (bool): A flag indicating whether to perform unconditional forward pass.
Returns:
torch.Tensor: The output tensor of the neural network model.
"""
def __init__(
self,
reference_unet: UNet2DConditionModel,
denoising_unet: UNet3DConditionModel,
face_locator: FaceLocator,
reference_control_writer: ReferenceAttentionControl,
reference_control_reader: ReferenceAttentionControl,
imageproj: ImageProjModel,
):
super().__init__()
self.reference_unet = reference_unet
self.denoising_unet = denoising_unet
self.face_locator = face_locator
self.reference_control_writer = reference_control_writer
self.reference_control_reader = reference_control_reader
self.imageproj = imageproj
def forward(
self,
noisy_latents,
timesteps,
ref_image_latents,
face_emb,
face_mask,
uncond_fwd: bool = False,
):
"""
Forward pass of the model.
Args:
self (Net): The model instance.
noisy_latents (torch.Tensor): Noisy latents.
timesteps (torch.Tensor): Timesteps.
ref_image_latents (torch.Tensor): Reference image latents.
face_emb (torch.Tensor): Face embedding.
face_mask (torch.Tensor): Face mask.
uncond_fwd (bool, optional): Unconditional forward pass. Defaults to False.
Returns:
torch.Tensor: Model prediction.
"""
face_emb = self.imageproj(face_emb)
face_mask = face_mask.to(device="cuda")
face_mask_feature = self.face_locator(face_mask)
if not uncond_fwd:
ref_timesteps = torch.zeros_like(timesteps)
self.reference_unet(
ref_image_latents,
ref_timesteps,
encoder_hidden_states=face_emb,
return_dict=False,
)
self.reference_control_reader.update(self.reference_control_writer)
model_pred = self.denoising_unet(
noisy_latents,
timesteps,
mask_cond_fea=face_mask_feature,
encoder_hidden_states=face_emb,
).sample
return model_pred
def get_noise_scheduler(cfg: argparse.Namespace):
"""
Create noise scheduler for training
Args:
cfg (omegaconf.dictconfig.DictConfig): Configuration object.
Returns:
train noise scheduler and val noise scheduler
"""
sched_kwargs = OmegaConf.to_container(cfg.noise_scheduler_kwargs)
if cfg.enable_zero_snr:
sched_kwargs.update(
rescale_betas_zero_snr=True,
timestep_spacing="trailing",
prediction_type="v_prediction",
)
val_noise_scheduler = DDIMScheduler(**sched_kwargs)
sched_kwargs.update({"beta_schedule": "scaled_linear"})
train_noise_scheduler = DDIMScheduler(**sched_kwargs)
return train_noise_scheduler, val_noise_scheduler
def log_validation(
vae,
net,
scheduler,
accelerator,
width,
height,
imageproj,
cfg,
save_dir,
global_step,
face_analysis_model_path,
):
"""
Log validation generation image.
Args:
vae (nn.Module): Variational Autoencoder model.
net (Net): Main model.
scheduler (diffusers.SchedulerMixin): Noise scheduler.
accelerator (accelerate.Accelerator): Accelerator for training.
width (int): Width of the input images.
height (int): Height of the input images.
imageproj (nn.Module): Image projection model.
cfg (omegaconf.dictconfig.DictConfig): Configuration object.
save_dir (str): directory path to save log result.
global_step (int): Global step number.
Returns:
None
"""
logger.info("Running validation... ")
ori_net = accelerator.unwrap_model(net)
ori_net = copy.deepcopy(ori_net)
reference_unet = ori_net.reference_unet
denoising_unet = ori_net.denoising_unet
face_locator = ori_net.face_locator
generator = torch.manual_seed(42)
image_enc = FaceAnalysis(
name="",
root=face_analysis_model_path,
providers=["CUDAExecutionProvider", "CPUExecutionProvider"],
)
image_enc.prepare(ctx_id=0, det_size=(640, 640))
pipe = StaticPipeline(
vae=vae,
reference_unet=reference_unet,
denoising_unet=denoising_unet,
face_locator=face_locator,
scheduler=scheduler,
imageproj=imageproj,
)
pil_images = []
for ref_image_path, mask_image_path in zip(cfg.ref_image_paths, cfg.mask_image_paths):
# for mask_image_path in mask_image_paths:
mask_name = os.path.splitext(
os.path.basename(mask_image_path))[0]
ref_name = os.path.splitext(
os.path.basename(ref_image_path))[0]
ref_image_pil = Image.open(ref_image_path).convert("RGB")
mask_image_pil = Image.open(mask_image_path).convert("RGB")
# Prepare face embeds
face_info = image_enc.get(
cv2.cvtColor(np.array(ref_image_pil), cv2.COLOR_RGB2BGR))
face_info = sorted(face_info, key=lambda x: (x['bbox'][2] - x['bbox'][0]) * (
x['bbox'][3] - x['bbox'][1]))[-1] # only use the maximum face
face_emb = torch.tensor(face_info['embedding'])
face_emb = face_emb.to(
imageproj.device, imageproj.dtype)
image = pipe(
ref_image_pil,
mask_image_pil,
width,
height,
20,
3.5,
face_emb,
generator=generator,
).images
image = image[0, :, 0].permute(1, 2, 0).cpu().numpy() # (3, 512, 512)
res_image_pil = Image.fromarray((image * 255).astype(np.uint8))
# Save ref_image, src_image and the generated_image
w, h = res_image_pil.size
canvas = Image.new("RGB", (w * 3, h), "white")
ref_image_pil = ref_image_pil.resize((w, h))
mask_image_pil = mask_image_pil.resize((w, h))
canvas.paste(ref_image_pil, (0, 0))
canvas.paste(mask_image_pil, (w, 0))
canvas.paste(res_image_pil, (w * 2, 0))
out_file = os.path.join(
save_dir, f"{global_step:06d}-{ref_name}_{mask_name}.jpg"
)
canvas.save(out_file)
del pipe
del ori_net
torch.cuda.empty_cache()
return pil_images
def train_stage1_process(cfg: argparse.Namespace) -> None:
"""
Trains the model using the given configuration (cfg).
Args:
cfg (dict): The configuration dictionary containing the parameters for training.
Notes:
- This function trains the model using the given configuration.
- It initializes the necessary components for training, such as the pipeline, optimizer, and scheduler.
- The training progress is logged and tracked using the accelerator.
- The trained model is saved after the training is completed.
"""
kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
accelerator = Accelerator(
gradient_accumulation_steps=cfg.solver.gradient_accumulation_steps,
mixed_precision=cfg.solver.mixed_precision,
log_with="mlflow",
project_dir="./mlruns",
kwargs_handlers=[kwargs],
)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if cfg.seed is not None:
seed_everything(cfg.seed)
# create output dir for training
exp_name = cfg.exp_name
save_dir = f"{cfg.output_dir}/{exp_name}"
checkpoint_dir = os.path.join(save_dir, "checkpoints")
module_dir = os.path.join(save_dir, "modules")
validation_dir = os.path.join(save_dir, "validation")
if accelerator.is_main_process:
init_output_dir([save_dir, checkpoint_dir, module_dir, validation_dir])
accelerator.wait_for_everyone()
# create model
if cfg.weight_dtype == "fp16":
weight_dtype = torch.float16
elif cfg.weight_dtype == "bf16":
weight_dtype = torch.bfloat16
elif cfg.weight_dtype == "fp32":
weight_dtype = torch.float32
else:
raise ValueError(
f"Do not support weight dtype: {cfg.weight_dtype} during training"
)
# create model
vae = AutoencoderKL.from_pretrained(cfg.vae_model_path).to(
"cuda", dtype=weight_dtype
)
reference_unet = UNet2DConditionModel.from_pretrained(
cfg.base_model_path,
subfolder="unet",
).to(device="cuda", dtype=weight_dtype)
denoising_unet = UNet3DConditionModel.from_pretrained_2d(
cfg.base_model_path,
"",
subfolder="unet",
unet_additional_kwargs={
"use_motion_module": False,
"unet_use_temporal_attention": False,
},
use_landmark=False
).to(device="cuda", dtype=weight_dtype)
imageproj = ImageProjModel(
cross_attention_dim=denoising_unet.config.cross_attention_dim,
clip_embeddings_dim=512,
clip_extra_context_tokens=4,
).to(device="cuda", dtype=weight_dtype)
if cfg.face_locator_pretrained:
face_locator = FaceLocator(
conditioning_embedding_channels=320, block_out_channels=(16, 32, 96, 256)
).to(device="cuda", dtype=weight_dtype)
miss, _ = face_locator.load_state_dict(
cfg.face_state_dict_path, strict=False)
logger.info(f"Missing key for face locator: {len(miss)}")
else:
face_locator = FaceLocator(
conditioning_embedding_channels=320,
).to(device="cuda", dtype=weight_dtype)
# Freeze
vae.requires_grad_(False)
denoising_unet.requires_grad_(True)
reference_unet.requires_grad_(True)
imageproj.requires_grad_(True)
face_locator.requires_grad_(True)
reference_control_writer = ReferenceAttentionControl(
reference_unet,
do_classifier_free_guidance=False,
mode="write",
fusion_blocks="full",
)
reference_control_reader = ReferenceAttentionControl(
denoising_unet,
do_classifier_free_guidance=False,
mode="read",
fusion_blocks="full",
)
net = Net(
reference_unet,
denoising_unet,
face_locator,
reference_control_writer,
reference_control_reader,
imageproj,
).to(dtype=weight_dtype)
# get noise scheduler
train_noise_scheduler, val_noise_scheduler = get_noise_scheduler(cfg)
# init optimizer
if cfg.solver.enable_xformers_memory_efficient_attention:
if is_xformers_available():
reference_unet.enable_xformers_memory_efficient_attention()
denoising_unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError(
"xformers is not available. Make sure it is installed correctly"
)
if cfg.solver.gradient_checkpointing:
reference_unet.enable_gradient_checkpointing()
denoising_unet.enable_gradient_checkpointing()
if cfg.solver.scale_lr:
learning_rate = (
cfg.solver.learning_rate
* cfg.solver.gradient_accumulation_steps
* cfg.data.train_bs
* accelerator.num_processes
)
else:
learning_rate = cfg.solver.learning_rate
# Initialize the optimizer
if cfg.solver.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError as exc:
raise ImportError(
"Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
) from exc
optimizer_cls = bnb.optim.AdamW8bit
else:
optimizer_cls = torch.optim.AdamW
trainable_params = list(
filter(lambda p: p.requires_grad, net.parameters()))
optimizer = optimizer_cls(
trainable_params,
lr=learning_rate,
betas=(cfg.solver.adam_beta1, cfg.solver.adam_beta2),
weight_decay=cfg.solver.adam_weight_decay,
eps=cfg.solver.adam_epsilon,
)
# init scheduler
lr_scheduler = get_scheduler(
cfg.solver.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=cfg.solver.lr_warmup_steps
* cfg.solver.gradient_accumulation_steps,
num_training_steps=cfg.solver.max_train_steps
* cfg.solver.gradient_accumulation_steps,
)
# get data loader
train_dataset = FaceMaskDataset(
img_size=(cfg.data.train_width, cfg.data.train_height),
data_meta_paths=cfg.data.meta_paths,
sample_margin=cfg.data.sample_margin,
)
train_dataloader = torch.utils.data.DataLoader(
train_dataset, batch_size=cfg.data.train_bs, shuffle=True, num_workers=4
)
# Prepare everything with our `accelerator`.
(
net,
optimizer,
train_dataloader,
lr_scheduler,
) = accelerator.prepare(
net,
optimizer,
train_dataloader,
lr_scheduler,
)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(
len(train_dataloader) / cfg.solver.gradient_accumulation_steps
)
# Afterwards we recalculate our number of training epochs
num_train_epochs = math.ceil(
cfg.solver.max_train_steps / num_update_steps_per_epoch
)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
run_time = datetime.now().strftime("%Y%m%d-%H%M")
accelerator.init_trackers(
cfg.exp_name,
init_kwargs={"mlflow": {"run_name": run_time}},
)
# dump config file
mlflow.log_dict(OmegaConf.to_container(cfg), "config.yaml")
logger.info(f"save config to {save_dir}")
OmegaConf.save(
cfg, os.path.join(save_dir, "config.yaml")
)
# Train!
total_batch_size = (
cfg.data.train_bs
* accelerator.num_processes
* cfg.solver.gradient_accumulation_steps
)
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {cfg.data.train_bs}")
logger.info(
f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
)
logger.info(
f" Gradient Accumulation steps = {cfg.solver.gradient_accumulation_steps}"
)
logger.info(f" Total optimization steps = {cfg.solver.max_train_steps}")
global_step = 0
first_epoch = 0
# load checkpoint
# Potentially load in the weights and states from a previous save
if cfg.resume_from_checkpoint:
logger.info(f"Loading checkpoint from {checkpoint_dir}")
global_step = load_checkpoint(cfg, checkpoint_dir, accelerator)
first_epoch = global_step // num_update_steps_per_epoch
# Only show the progress bar once on each machine.
progress_bar = tqdm(
range(global_step, cfg.solver.max_train_steps),
disable=not accelerator.is_main_process,
)
progress_bar.set_description("Steps")
net.train()
for _ in range(first_epoch, num_train_epochs):
train_loss = 0.0
for _, batch in enumerate(train_dataloader):
with accelerator.accumulate(net):
# Convert videos to latent space
pixel_values = batch["img"].to(weight_dtype)
with torch.no_grad():
latents = vae.encode(pixel_values).latent_dist.sample()
latents = latents.unsqueeze(2) # (b, c, 1, h, w)
latents = latents * 0.18215
noise = torch.randn_like(latents)
if cfg.noise_offset > 0.0:
noise += cfg.noise_offset * torch.randn(
(noise.shape[0], noise.shape[1], 1, 1, 1),
device=noise.device,
)
bsz = latents.shape[0]
# Sample a random timestep for each video
timesteps = torch.randint(
0,
train_noise_scheduler.num_train_timesteps,
(bsz,),
device=latents.device,
)
timesteps = timesteps.long()
face_mask_img = batch["tgt_mask"]
face_mask_img = face_mask_img.unsqueeze(
2)
face_mask_img = face_mask_img.to(weight_dtype)
uncond_fwd = random.random() < cfg.uncond_ratio
face_emb_list = []
ref_image_list = []
for _, (ref_img, face_emb) in enumerate(
zip(batch["ref_img"], batch["face_emb"])
):
if uncond_fwd:
face_emb_list.append(torch.zeros_like(face_emb))
else:
face_emb_list.append(face_emb)
ref_image_list.append(ref_img)
with torch.no_grad():
ref_img = torch.stack(ref_image_list, dim=0).to(
dtype=vae.dtype, device=vae.device
)
ref_image_latents = vae.encode(
ref_img
).latent_dist.sample()
ref_image_latents = ref_image_latents * 0.18215
face_emb = torch.stack(face_emb_list, dim=0).to(
dtype=imageproj.dtype, device=imageproj.device
)
# add noise
noisy_latents = train_noise_scheduler.add_noise(
latents, noise, timesteps
)
# Get the target for loss depending on the prediction type
if train_noise_scheduler.prediction_type == "epsilon":
target = noise
elif train_noise_scheduler.prediction_type == "v_prediction":
target = train_noise_scheduler.get_velocity(
latents, noise, timesteps
)
else:
raise ValueError(
f"Unknown prediction type {train_noise_scheduler.prediction_type}"
)
model_pred = net(
noisy_latents,
timesteps,
ref_image_latents,
face_emb,
face_mask_img,
uncond_fwd,
)
if cfg.snr_gamma == 0:
loss = F.mse_loss(
model_pred.float(), target.float(), reduction="mean"
)
else:
snr = compute_snr(train_noise_scheduler, timesteps)
if train_noise_scheduler.config.prediction_type == "v_prediction":
# Velocity objective requires that we add one to SNR values before we divide by them.
snr = snr + 1
mse_loss_weights = (
torch.stack(
[snr, cfg.snr_gamma * torch.ones_like(timesteps)], dim=1
).min(dim=1)[0]
/ snr
)
loss = F.mse_loss(
model_pred.float(), target.float(), reduction="none"
)
loss = (
loss.mean(dim=list(range(1, len(loss.shape))))
* mse_loss_weights
)
loss = loss.mean()
# Gather the losses across all processes for logging (if we use distributed training).
avg_loss = accelerator.gather(
loss.repeat(cfg.data.train_bs)).mean()
train_loss += avg_loss.item() / cfg.solver.gradient_accumulation_steps
# Backpropagate
accelerator.backward(loss)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(
trainable_params,
cfg.solver.max_grad_norm,
)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
if accelerator.sync_gradients:
reference_control_reader.clear()
reference_control_writer.clear()
progress_bar.update(1)
global_step += 1
accelerator.log({"train_loss": train_loss}, step=global_step)
train_loss = 0.0
if global_step % cfg.checkpointing_steps == 0 or global_step == cfg.solver.max_train_steps:
accelerator.wait_for_everyone()
save_path = os.path.join(
checkpoint_dir, f"checkpoint-{global_step}")
if accelerator.is_main_process:
delete_additional_ckpt(checkpoint_dir, 3)
accelerator.save_state(save_path)
accelerator.wait_for_everyone()
unwrap_net = accelerator.unwrap_model(net)
if accelerator.is_main_process:
save_checkpoint(
unwrap_net.reference_unet,
module_dir,
"reference_unet",
global_step,
total_limit=3,
)
save_checkpoint(
unwrap_net.imageproj,
module_dir,
"imageproj",
global_step,
total_limit=3,
)
save_checkpoint(
unwrap_net.denoising_unet,
module_dir,
"denoising_unet",
global_step,
total_limit=3,
)
save_checkpoint(
unwrap_net.face_locator,
module_dir,
"face_locator",
global_step,
total_limit=3,
)
if global_step % cfg.val.validation_steps == 0 or global_step == 1:
if accelerator.is_main_process:
generator = torch.Generator(device=accelerator.device)
generator.manual_seed(cfg.seed)
log_validation(
vae=vae,
net=net,
scheduler=val_noise_scheduler,
accelerator=accelerator,
width=cfg.data.train_width,
height=cfg.data.train_height,
imageproj=imageproj,
cfg=cfg,
save_dir=validation_dir,
global_step=global_step,
face_analysis_model_path=cfg.face_analysis_model_path
)
logs = {
"step_loss": loss.detach().item(),
"lr": lr_scheduler.get_last_lr()[0],
}
progress_bar.set_postfix(**logs)
if global_step >= cfg.solver.max_train_steps:
# process final module weight for stage2
if accelerator.is_main_process:
move_final_checkpoint(save_dir, module_dir, "reference_unet")
move_final_checkpoint(save_dir, module_dir, "imageproj")
move_final_checkpoint(save_dir, module_dir, "denoising_unet")
move_final_checkpoint(save_dir, module_dir, "face_locator")
break
accelerator.wait_for_everyone()
accelerator.end_training()
def load_config(config_path: str) -> dict:
"""
Loads the configuration file.
Args:
config_path (str): Path to the configuration file.
Returns:
dict: The configuration dictionary.
"""
if config_path.endswith(".yaml"):
return OmegaConf.load(config_path)
if config_path.endswith(".py"):
return import_filename(config_path).cfg
raise ValueError("Unsupported format for config file")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str,
default="./configs/train/stage1.yaml")
args = parser.parse_args()
try:
config = load_config(args.config)
train_stage1_process(config)
except Exception as e:
logging.error("Failed to execute the training process: %s", e)
|