|
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
This module defines various components used in the ResNet model, such as InflatedConv3D, InflatedGroupNorm,
|
|
Upsample3D, Downsample3D, ResnetBlock3D, and Mish activation function. These components are used to construct
|
|
a deep neural network model for image classification or other computer vision tasks.
|
|
|
|
Classes:
|
|
- InflatedConv3d: An inflated 3D convolutional layer, inheriting from nn.Conv2d.
|
|
- InflatedGroupNorm: An inflated group normalization layer, inheriting from nn.GroupNorm.
|
|
- Upsample3D: A 3D upsampling module, used to increase the resolution of the input tensor.
|
|
- Downsample3D: A 3D downsampling module, used to decrease the resolution of the input tensor.
|
|
- ResnetBlock3D: A 3D residual block, commonly used in ResNet architectures.
|
|
- Mish: A Mish activation function, which is a smooth, non-monotonic activation function.
|
|
|
|
To use this module, simply import the classes and functions you need and follow the instructions provided in
|
|
the respective class and function docstrings.
|
|
"""
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from einops import rearrange
|
|
from torch import nn
|
|
|
|
|
|
class InflatedConv3d(nn.Conv2d):
|
|
"""
|
|
InflatedConv3d is a class that inherits from torch.nn.Conv2d and overrides the forward method.
|
|
|
|
This class is used to perform 3D convolution on input tensor x. It is a specialized type of convolutional layer
|
|
commonly used in deep learning models for computer vision tasks. The main difference between a regular Conv2d and
|
|
InflatedConv3d is that InflatedConv3d is designed to handle 3D input tensors, which are typically the result of
|
|
inflating 2D convolutional layers to 3D for use in 3D deep learning tasks.
|
|
|
|
Attributes:
|
|
Same as torch.nn.Conv2d.
|
|
|
|
Methods:
|
|
forward(self, x):
|
|
Performs 3D convolution on the input tensor x using the InflatedConv3d layer.
|
|
|
|
Example:
|
|
conv_layer = InflatedConv3d(in_channels=3, out_channels=64, kernel_size=3, stride=1, padding=1)
|
|
output = conv_layer(input_tensor)
|
|
"""
|
|
def forward(self, x):
|
|
"""
|
|
Forward pass of the InflatedConv3d layer.
|
|
|
|
Args:
|
|
x (torch.Tensor): Input tensor to the layer.
|
|
|
|
Returns:
|
|
torch.Tensor: Output tensor after applying the InflatedConv3d layer.
|
|
"""
|
|
video_length = x.shape[2]
|
|
|
|
x = rearrange(x, "b c f h w -> (b f) c h w")
|
|
x = super().forward(x)
|
|
x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
|
|
|
|
return x
|
|
|
|
|
|
class InflatedGroupNorm(nn.GroupNorm):
|
|
"""
|
|
InflatedGroupNorm is a custom class that inherits from torch.nn.GroupNorm.
|
|
It is used to apply group normalization to 3D tensors.
|
|
|
|
Args:
|
|
num_groups (int): The number of groups to divide the channels into.
|
|
num_channels (int): The number of channels in the input tensor.
|
|
eps (float, optional): A small constant to add to the variance to avoid division by zero. Defaults to 1e-5.
|
|
affine (bool, optional): If True, the module has learnable affine parameters. Defaults to True.
|
|
|
|
Attributes:
|
|
weight (torch.Tensor): The learnable weight tensor for scale.
|
|
bias (torch.Tensor): The learnable bias tensor for shift.
|
|
|
|
Forward method:
|
|
x (torch.Tensor): Input tensor to be normalized.
|
|
return (torch.Tensor): Normalized tensor.
|
|
"""
|
|
def forward(self, x):
|
|
"""
|
|
Performs a forward pass through the CustomClassName.
|
|
|
|
:param x: Input tensor of shape (batch_size, channels, video_length, height, width).
|
|
:return: Output tensor of shape (batch_size, channels, video_length, height, width).
|
|
"""
|
|
video_length = x.shape[2]
|
|
|
|
x = rearrange(x, "b c f h w -> (b f) c h w")
|
|
x = super().forward(x)
|
|
x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
|
|
|
|
return x
|
|
|
|
|
|
class Upsample3D(nn.Module):
|
|
"""
|
|
Upsample3D is a PyTorch module that upsamples a 3D tensor.
|
|
|
|
Args:
|
|
channels (int): The number of channels in the input tensor.
|
|
use_conv (bool): Whether to use a convolutional layer for upsampling.
|
|
use_conv_transpose (bool): Whether to use a transposed convolutional layer for upsampling.
|
|
out_channels (int): The number of channels in the output tensor.
|
|
name (str): The name of the convolutional layer.
|
|
"""
|
|
def __init__(
|
|
self,
|
|
channels,
|
|
use_conv=False,
|
|
use_conv_transpose=False,
|
|
out_channels=None,
|
|
name="conv",
|
|
):
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.out_channels = out_channels or channels
|
|
self.use_conv = use_conv
|
|
self.use_conv_transpose = use_conv_transpose
|
|
self.name = name
|
|
|
|
if use_conv_transpose:
|
|
raise NotImplementedError
|
|
if use_conv:
|
|
self.conv = InflatedConv3d(self.channels, self.out_channels, 3, padding=1)
|
|
|
|
def forward(self, hidden_states, output_size=None):
|
|
"""
|
|
Forward pass of the Upsample3D class.
|
|
|
|
Args:
|
|
hidden_states (torch.Tensor): Input tensor to be upsampled.
|
|
output_size (tuple, optional): Desired output size of the upsampled tensor.
|
|
|
|
Returns:
|
|
torch.Tensor: Upsampled tensor.
|
|
|
|
Raises:
|
|
AssertionError: If the number of channels in the input tensor does not match the expected channels.
|
|
"""
|
|
assert hidden_states.shape[1] == self.channels
|
|
|
|
if self.use_conv_transpose:
|
|
raise NotImplementedError
|
|
|
|
|
|
dtype = hidden_states.dtype
|
|
if dtype == torch.bfloat16:
|
|
hidden_states = hidden_states.to(torch.float32)
|
|
|
|
|
|
if hidden_states.shape[0] >= 64:
|
|
hidden_states = hidden_states.contiguous()
|
|
|
|
|
|
|
|
if output_size is None:
|
|
hidden_states = F.interpolate(
|
|
hidden_states, scale_factor=[1.0, 2.0, 2.0], mode="nearest"
|
|
)
|
|
else:
|
|
hidden_states = F.interpolate(
|
|
hidden_states, size=output_size, mode="nearest"
|
|
)
|
|
|
|
|
|
if dtype == torch.bfloat16:
|
|
hidden_states = hidden_states.to(dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hidden_states = self.conv(hidden_states)
|
|
|
|
return hidden_states
|
|
|
|
|
|
class Downsample3D(nn.Module):
|
|
"""
|
|
The Downsample3D class is a PyTorch module for downsampling a 3D tensor, which is used to
|
|
reduce the spatial resolution of feature maps, commonly in the encoder part of a neural network.
|
|
|
|
Attributes:
|
|
channels (int): Number of input channels.
|
|
use_conv (bool): Flag to use a convolutional layer for downsampling.
|
|
out_channels (int, optional): Number of output channels. Defaults to input channels if None.
|
|
padding (int): Padding added to the input.
|
|
name (str): Name of the convolutional layer used for downsampling.
|
|
|
|
Methods:
|
|
forward(self, hidden_states):
|
|
Downsamples the input tensor hidden_states and returns the downsampled tensor.
|
|
"""
|
|
def __init__(
|
|
self, channels, use_conv=False, out_channels=None, padding=1, name="conv"
|
|
):
|
|
"""
|
|
Downsamples the given input in the 3D space.
|
|
|
|
Args:
|
|
channels: The number of input channels.
|
|
use_conv: Whether to use a convolutional layer for downsampling.
|
|
out_channels: The number of output channels. If None, the input channels are used.
|
|
padding: The amount of padding to be added to the input.
|
|
name: The name of the convolutional layer.
|
|
"""
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.out_channels = out_channels or channels
|
|
self.use_conv = use_conv
|
|
self.padding = padding
|
|
stride = 2
|
|
self.name = name
|
|
|
|
if use_conv:
|
|
self.conv = InflatedConv3d(
|
|
self.channels, self.out_channels, 3, stride=stride, padding=padding
|
|
)
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
def forward(self, hidden_states):
|
|
"""
|
|
Forward pass for the Downsample3D class.
|
|
|
|
Args:
|
|
hidden_states (torch.Tensor): Input tensor to be downsampled.
|
|
|
|
Returns:
|
|
torch.Tensor: Downsampled tensor.
|
|
|
|
Raises:
|
|
AssertionError: If the number of channels in the input tensor does not match the expected channels.
|
|
"""
|
|
assert hidden_states.shape[1] == self.channels
|
|
if self.use_conv and self.padding == 0:
|
|
raise NotImplementedError
|
|
|
|
assert hidden_states.shape[1] == self.channels
|
|
hidden_states = self.conv(hidden_states)
|
|
|
|
return hidden_states
|
|
|
|
|
|
class ResnetBlock3D(nn.Module):
|
|
"""
|
|
The ResnetBlock3D class defines a 3D residual block, a common building block in ResNet
|
|
architectures for both image and video modeling tasks.
|
|
|
|
Attributes:
|
|
in_channels (int): Number of input channels.
|
|
out_channels (int, optional): Number of output channels, defaults to in_channels if None.
|
|
conv_shortcut (bool): Flag to use a convolutional shortcut.
|
|
dropout (float): Dropout rate.
|
|
temb_channels (int): Number of channels in the time embedding tensor.
|
|
groups (int): Number of groups for the group normalization layers.
|
|
eps (float): Epsilon value for group normalization.
|
|
non_linearity (str): Type of nonlinearity to apply after convolutions.
|
|
time_embedding_norm (str): Type of normalization for the time embedding.
|
|
output_scale_factor (float): Scaling factor for the output tensor.
|
|
use_in_shortcut (bool): Flag to include the input tensor in the shortcut connection.
|
|
use_inflated_groupnorm (bool): Flag to use inflated group normalization layers.
|
|
|
|
Methods:
|
|
forward(self, input_tensor, temb):
|
|
Passes the input tensor and time embedding through the residual block and
|
|
returns the output tensor.
|
|
"""
|
|
def __init__(
|
|
self,
|
|
*,
|
|
in_channels,
|
|
out_channels=None,
|
|
conv_shortcut=False,
|
|
dropout=0.0,
|
|
temb_channels=512,
|
|
groups=32,
|
|
groups_out=None,
|
|
pre_norm=True,
|
|
eps=1e-6,
|
|
non_linearity="swish",
|
|
time_embedding_norm="default",
|
|
output_scale_factor=1.0,
|
|
use_in_shortcut=None,
|
|
use_inflated_groupnorm=None,
|
|
):
|
|
super().__init__()
|
|
self.pre_norm = pre_norm
|
|
self.pre_norm = True
|
|
self.in_channels = in_channels
|
|
out_channels = in_channels if out_channels is None else out_channels
|
|
self.out_channels = out_channels
|
|
self.use_conv_shortcut = conv_shortcut
|
|
self.time_embedding_norm = time_embedding_norm
|
|
self.output_scale_factor = output_scale_factor
|
|
|
|
if groups_out is None:
|
|
groups_out = groups
|
|
|
|
assert use_inflated_groupnorm is not None
|
|
if use_inflated_groupnorm:
|
|
self.norm1 = InflatedGroupNorm(
|
|
num_groups=groups, num_channels=in_channels, eps=eps, affine=True
|
|
)
|
|
else:
|
|
self.norm1 = torch.nn.GroupNorm(
|
|
num_groups=groups, num_channels=in_channels, eps=eps, affine=True
|
|
)
|
|
|
|
self.conv1 = InflatedConv3d(
|
|
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
|
)
|
|
|
|
if temb_channels is not None:
|
|
if self.time_embedding_norm == "default":
|
|
time_emb_proj_out_channels = out_channels
|
|
elif self.time_embedding_norm == "scale_shift":
|
|
time_emb_proj_out_channels = out_channels * 2
|
|
else:
|
|
raise ValueError(
|
|
f"unknown time_embedding_norm : {self.time_embedding_norm} "
|
|
)
|
|
|
|
self.time_emb_proj = torch.nn.Linear(
|
|
temb_channels, time_emb_proj_out_channels
|
|
)
|
|
else:
|
|
self.time_emb_proj = None
|
|
|
|
if use_inflated_groupnorm:
|
|
self.norm2 = InflatedGroupNorm(
|
|
num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True
|
|
)
|
|
else:
|
|
self.norm2 = torch.nn.GroupNorm(
|
|
num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True
|
|
)
|
|
self.dropout = torch.nn.Dropout(dropout)
|
|
self.conv2 = InflatedConv3d(
|
|
out_channels, out_channels, kernel_size=3, stride=1, padding=1
|
|
)
|
|
|
|
if non_linearity == "swish":
|
|
self.nonlinearity = F.silu()
|
|
elif non_linearity == "mish":
|
|
self.nonlinearity = Mish()
|
|
elif non_linearity == "silu":
|
|
self.nonlinearity = nn.SiLU()
|
|
|
|
self.use_in_shortcut = (
|
|
self.in_channels != self.out_channels
|
|
if use_in_shortcut is None
|
|
else use_in_shortcut
|
|
)
|
|
|
|
self.conv_shortcut = None
|
|
if self.use_in_shortcut:
|
|
self.conv_shortcut = InflatedConv3d(
|
|
in_channels, out_channels, kernel_size=1, stride=1, padding=0
|
|
)
|
|
|
|
def forward(self, input_tensor, temb):
|
|
"""
|
|
Forward pass for the ResnetBlock3D class.
|
|
|
|
Args:
|
|
input_tensor (torch.Tensor): Input tensor to the ResnetBlock3D layer.
|
|
temb (torch.Tensor): Token embedding tensor.
|
|
|
|
Returns:
|
|
torch.Tensor: Output tensor after passing through the ResnetBlock3D layer.
|
|
"""
|
|
hidden_states = input_tensor
|
|
|
|
hidden_states = self.norm1(hidden_states)
|
|
hidden_states = self.nonlinearity(hidden_states)
|
|
|
|
hidden_states = self.conv1(hidden_states)
|
|
|
|
if temb is not None:
|
|
temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None, None]
|
|
|
|
if temb is not None and self.time_embedding_norm == "default":
|
|
hidden_states = hidden_states + temb
|
|
|
|
hidden_states = self.norm2(hidden_states)
|
|
|
|
if temb is not None and self.time_embedding_norm == "scale_shift":
|
|
scale, shift = torch.chunk(temb, 2, dim=1)
|
|
hidden_states = hidden_states * (1 + scale) + shift
|
|
|
|
hidden_states = self.nonlinearity(hidden_states)
|
|
|
|
hidden_states = self.dropout(hidden_states)
|
|
hidden_states = self.conv2(hidden_states)
|
|
|
|
if self.conv_shortcut is not None:
|
|
input_tensor = self.conv_shortcut(input_tensor)
|
|
|
|
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
|
|
|
|
return output_tensor
|
|
|
|
|
|
class Mish(torch.nn.Module):
|
|
"""
|
|
The Mish class implements the Mish activation function, a smooth, non-monotonic function
|
|
that can be used in neural networks as an alternative to traditional activation functions like ReLU.
|
|
|
|
Methods:
|
|
forward(self, hidden_states):
|
|
Applies the Mish activation function to the input tensor hidden_states and
|
|
returns the resulting tensor.
|
|
"""
|
|
def forward(self, hidden_states):
|
|
"""
|
|
Mish activation function.
|
|
|
|
Args:
|
|
hidden_states (torch.Tensor): The input tensor to apply the Mish activation function to.
|
|
|
|
Returns:
|
|
hidden_states (torch.Tensor): The output tensor after applying the Mish activation function.
|
|
"""
|
|
return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states))
|
|
|