# pylint: disable=E1101,C0415,W0718,R0801 # scripts/train_stage2.py """ This is the main training script for stage 2 of the project. It imports necessary packages, defines necessary classes and functions, and trains the model using the provided configuration. The script includes the following classes and functions: 1. Net: A PyTorch model that takes noisy latents, timesteps, reference image latents, face embeddings, and face masks as input and returns the denoised latents. 2. get_attention_mask: A function that rearranges the mask tensors to the required format. 3. get_noise_scheduler: A function that creates and returns the noise schedulers for training and validation. 4. process_audio_emb: A function that processes the audio embeddings to concatenate with other tensors. 5. log_validation: A function that logs the validation information using the given VAE, image encoder, network, scheduler, accelerator, width, height, and configuration. 6. train_stage2_process: A function that processes the training stage 2 using the given configuration. 7. load_config: A function that loads the configuration file from the given path. The script also includes the necessary imports and a brief description of the purpose of the file. """ import argparse import copy import logging import math import os import random import time import warnings from datetime import datetime from typing import List, Tuple import diffusers import mlflow import torch import torch.nn.functional as F import torch.utils.checkpoint import transformers from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import DistributedDataParallelKwargs from diffusers import AutoencoderKL, DDIMScheduler from diffusers.optimization import get_scheduler from diffusers.utils import check_min_version from diffusers.utils.import_utils import is_xformers_available from einops import rearrange, repeat from omegaconf import OmegaConf from torch import nn from tqdm.auto import tqdm from hallo.animate.face_animate import FaceAnimatePipeline from hallo.datasets.audio_processor import AudioProcessor from hallo.datasets.image_processor import ImageProcessor from hallo.datasets.talk_video import TalkingVideoDataset from hallo.models.audio_proj import AudioProjModel from hallo.models.face_locator import FaceLocator from hallo.models.image_proj import ImageProjModel from hallo.models.mutual_self_attention import ReferenceAttentionControl from hallo.models.unet_2d_condition import UNet2DConditionModel from hallo.models.unet_3d import UNet3DConditionModel from hallo.utils.util import (compute_snr, delete_additional_ckpt, import_filename, init_output_dir, load_checkpoint, save_checkpoint, seed_everything, tensor_to_video) warnings.filterwarnings("ignore") # Will error if the minimal version of diffusers is not installed. Remove at your own risks. check_min_version("0.10.0.dev0") logger = get_logger(__name__, log_level="INFO") class Net(nn.Module): """ The Net class defines a neural network model that combines a reference UNet2DConditionModel, a denoising UNet3DConditionModel, a face locator, and other components to animate a face in a static image. Args: reference_unet (UNet2DConditionModel): The reference UNet2DConditionModel used for face animation. denoising_unet (UNet3DConditionModel): The denoising UNet3DConditionModel used for face animation. face_locator (FaceLocator): The face locator model used for face animation. reference_control_writer: The reference control writer component. reference_control_reader: The reference control reader component. imageproj: The image projection model. audioproj: The audio projection model. Forward method: noisy_latents (torch.Tensor): The noisy latents tensor. timesteps (torch.Tensor): The timesteps tensor. ref_image_latents (torch.Tensor): The reference image latents tensor. face_emb (torch.Tensor): The face embeddings tensor. audio_emb (torch.Tensor): The audio embeddings tensor. mask (torch.Tensor): Hard face mask for face locator. full_mask (torch.Tensor): Pose Mask. face_mask (torch.Tensor): Face Mask lip_mask (torch.Tensor): Lip Mask uncond_img_fwd (bool): A flag indicating whether to perform reference image unconditional forward pass. uncond_audio_fwd (bool): A flag indicating whether to perform audio unconditional forward pass. Returns: torch.Tensor: The output tensor of the neural network model. """ def __init__( self, reference_unet: UNet2DConditionModel, denoising_unet: UNet3DConditionModel, face_locator: FaceLocator, reference_control_writer, reference_control_reader, imageproj, audioproj, ): super().__init__() self.reference_unet = reference_unet self.denoising_unet = denoising_unet self.face_locator = face_locator self.reference_control_writer = reference_control_writer self.reference_control_reader = reference_control_reader self.imageproj = imageproj self.audioproj = audioproj def forward( self, noisy_latents: torch.Tensor, timesteps: torch.Tensor, ref_image_latents: torch.Tensor, face_emb: torch.Tensor, audio_emb: torch.Tensor, mask: torch.Tensor, full_mask: torch.Tensor, face_mask: torch.Tensor, lip_mask: torch.Tensor, uncond_img_fwd: bool = False, uncond_audio_fwd: bool = False, ): """ simple docstring to prevent pylint error """ face_emb = self.imageproj(face_emb) mask = mask.to(device="cuda") mask_feature = self.face_locator(mask) audio_emb = audio_emb.to( device=self.audioproj.device, dtype=self.audioproj.dtype) audio_emb = self.audioproj(audio_emb) # condition forward if not uncond_img_fwd: ref_timesteps = torch.zeros_like(timesteps) ref_timesteps = repeat( ref_timesteps, "b -> (repeat b)", repeat=ref_image_latents.size(0) // ref_timesteps.size(0), ) self.reference_unet( ref_image_latents, ref_timesteps, encoder_hidden_states=face_emb, return_dict=False, ) self.reference_control_reader.update(self.reference_control_writer) if uncond_audio_fwd: audio_emb = torch.zeros_like(audio_emb).to( device=audio_emb.device, dtype=audio_emb.dtype ) model_pred = self.denoising_unet( noisy_latents, timesteps, mask_cond_fea=mask_feature, encoder_hidden_states=face_emb, audio_embedding=audio_emb, full_mask=full_mask, face_mask=face_mask, lip_mask=lip_mask ).sample return model_pred def get_attention_mask(mask: torch.Tensor, weight_dtype: torch.dtype) -> torch.Tensor: """ Rearrange the mask tensors to the required format. Args: mask (torch.Tensor): The input mask tensor. weight_dtype (torch.dtype): The data type for the mask tensor. Returns: torch.Tensor: The rearranged mask tensor. """ if isinstance(mask, List): _mask = [] for m in mask: _mask.append( rearrange(m, "b f 1 h w -> (b f) (h w)").to(weight_dtype)) return _mask mask = rearrange(mask, "b f 1 h w -> (b f) (h w)").to(weight_dtype) return mask def get_noise_scheduler(cfg: argparse.Namespace) -> Tuple[DDIMScheduler, DDIMScheduler]: """ Create noise scheduler for training. Args: cfg (argparse.Namespace): Configuration object. Returns: Tuple[DDIMScheduler, DDIMScheduler]: Train noise scheduler and validation noise scheduler. """ sched_kwargs = OmegaConf.to_container(cfg.noise_scheduler_kwargs) if cfg.enable_zero_snr: sched_kwargs.update( rescale_betas_zero_snr=True, timestep_spacing="trailing", prediction_type="v_prediction", ) val_noise_scheduler = DDIMScheduler(**sched_kwargs) sched_kwargs.update({"beta_schedule": "scaled_linear"}) train_noise_scheduler = DDIMScheduler(**sched_kwargs) return train_noise_scheduler, val_noise_scheduler def process_audio_emb(audio_emb: torch.Tensor) -> torch.Tensor: """ Process the audio embedding to concatenate with other tensors. Parameters: audio_emb (torch.Tensor): The audio embedding tensor to process. Returns: concatenated_tensors (List[torch.Tensor]): The concatenated tensor list. """ concatenated_tensors = [] for i in range(audio_emb.shape[0]): vectors_to_concat = [ audio_emb[max(min(i + j, audio_emb.shape[0] - 1), 0)]for j in range(-2, 3)] concatenated_tensors.append(torch.stack(vectors_to_concat, dim=0)) audio_emb = torch.stack(concatenated_tensors, dim=0) return audio_emb def log_validation( accelerator: Accelerator, vae: AutoencoderKL, net: Net, scheduler: DDIMScheduler, width: int, height: int, clip_length: int = 24, generator: torch.Generator = None, cfg: dict = None, save_dir: str = None, global_step: int = 0, times: int = None, face_analysis_model_path: str = "", ) -> None: """ Log validation video during the training process. Args: accelerator (Accelerator): The accelerator for distributed training. vae (AutoencoderKL): The autoencoder model. net (Net): The main neural network model. scheduler (DDIMScheduler): The scheduler for noise. width (int): The width of the input images. height (int): The height of the input images. clip_length (int): The length of the video clips. Defaults to 24. generator (torch.Generator): The random number generator. Defaults to None. cfg (dict): The configuration dictionary. Defaults to None. save_dir (str): The directory to save validation results. Defaults to None. global_step (int): The current global step in training. Defaults to 0. times (int): The number of inference times. Defaults to None. face_analysis_model_path (str): The path to the face analysis model. Defaults to "". Returns: torch.Tensor: The tensor result of the validation. """ ori_net = accelerator.unwrap_model(net) reference_unet = ori_net.reference_unet denoising_unet = ori_net.denoising_unet face_locator = ori_net.face_locator imageproj = ori_net.imageproj audioproj = ori_net.audioproj generator = torch.manual_seed(42) tmp_denoising_unet = copy.deepcopy(denoising_unet) pipeline = FaceAnimatePipeline( vae=vae, reference_unet=reference_unet, denoising_unet=tmp_denoising_unet, face_locator=face_locator, image_proj=imageproj, scheduler=scheduler, ) pipeline = pipeline.to("cuda") image_processor = ImageProcessor((width, height), face_analysis_model_path) audio_processor = AudioProcessor( cfg.data.sample_rate, cfg.data.fps, cfg.wav2vec_config.model_path, cfg.wav2vec_config.features == "last", os.path.dirname(cfg.audio_separator.model_path), os.path.basename(cfg.audio_separator.model_path), os.path.join(save_dir, '.cache', "audio_preprocess") ) for idx, ref_img_path in enumerate(cfg.ref_img_path): audio_path = cfg.audio_path[idx] source_image_pixels, \ source_image_face_region, \ source_image_face_emb, \ source_image_full_mask, \ source_image_face_mask, \ source_image_lip_mask = image_processor.preprocess( ref_img_path, os.path.join(save_dir, '.cache'), cfg.face_expand_ratio) audio_emb, audio_length = audio_processor.preprocess( audio_path, clip_length) audio_emb = process_audio_emb(audio_emb) source_image_pixels = source_image_pixels.unsqueeze(0) source_image_face_region = source_image_face_region.unsqueeze(0) source_image_face_emb = source_image_face_emb.reshape(1, -1) source_image_face_emb = torch.tensor(source_image_face_emb) source_image_full_mask = [ (mask.repeat(clip_length, 1)) for mask in source_image_full_mask ] source_image_face_mask = [ (mask.repeat(clip_length, 1)) for mask in source_image_face_mask ] source_image_lip_mask = [ (mask.repeat(clip_length, 1)) for mask in source_image_lip_mask ] times = audio_emb.shape[0] // clip_length tensor_result = [] generator = torch.manual_seed(42) for t in range(times): print(f"[{t+1}/{times}]") if len(tensor_result) == 0: # The first iteration motion_zeros = source_image_pixels.repeat( cfg.data.n_motion_frames, 1, 1, 1) motion_zeros = motion_zeros.to( dtype=source_image_pixels.dtype, device=source_image_pixels.device) pixel_values_ref_img = torch.cat( [source_image_pixels, motion_zeros], dim=0) # concat the ref image and the first motion frames else: motion_frames = tensor_result[-1][0] motion_frames = motion_frames.permute(1, 0, 2, 3) motion_frames = motion_frames[0 - cfg.data.n_motion_frames:] motion_frames = motion_frames * 2.0 - 1.0 motion_frames = motion_frames.to( dtype=source_image_pixels.dtype, device=source_image_pixels.device) pixel_values_ref_img = torch.cat( [source_image_pixels, motion_frames], dim=0) # concat the ref image and the motion frames pixel_values_ref_img = pixel_values_ref_img.unsqueeze(0) audio_tensor = audio_emb[ t * clip_length: min((t + 1) * clip_length, audio_emb.shape[0]) ] audio_tensor = audio_tensor.unsqueeze(0) audio_tensor = audio_tensor.to( device=audioproj.device, dtype=audioproj.dtype) audio_tensor = audioproj(audio_tensor) pipeline_output = pipeline( ref_image=pixel_values_ref_img, audio_tensor=audio_tensor, face_emb=source_image_face_emb, face_mask=source_image_face_region, pixel_values_full_mask=source_image_full_mask, pixel_values_face_mask=source_image_face_mask, pixel_values_lip_mask=source_image_lip_mask, width=cfg.data.train_width, height=cfg.data.train_height, video_length=clip_length, num_inference_steps=cfg.inference_steps, guidance_scale=cfg.cfg_scale, generator=generator, ) tensor_result.append(pipeline_output.videos) tensor_result = torch.cat(tensor_result, dim=2) tensor_result = tensor_result.squeeze(0) tensor_result = tensor_result[:, :audio_length] audio_name = os.path.basename(audio_path).split('.')[0] ref_name = os.path.basename(ref_img_path).split('.')[0] output_file = os.path.join(save_dir,f"{global_step}_{ref_name}_{audio_name}.mp4") # save the result after all iteration tensor_to_video(tensor_result, output_file, audio_path) # clean up del tmp_denoising_unet del pipeline del image_processor del audio_processor torch.cuda.empty_cache() return tensor_result def train_stage2_process(cfg: argparse.Namespace) -> None: """ Trains the model using the given configuration (cfg). Args: cfg (dict): The configuration dictionary containing the parameters for training. Notes: - This function trains the model using the given configuration. - It initializes the necessary components for training, such as the pipeline, optimizer, and scheduler. - The training progress is logged and tracked using the accelerator. - The trained model is saved after the training is completed. """ kwargs = DistributedDataParallelKwargs(find_unused_parameters=False) accelerator = Accelerator( gradient_accumulation_steps=cfg.solver.gradient_accumulation_steps, mixed_precision=cfg.solver.mixed_precision, log_with="mlflow", project_dir="./mlruns", kwargs_handlers=[kwargs], ) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: transformers.utils.logging.set_verbosity_warning() diffusers.utils.logging.set_verbosity_info() else: transformers.utils.logging.set_verbosity_error() diffusers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if cfg.seed is not None: seed_everything(cfg.seed) # create output dir for training exp_name = cfg.exp_name save_dir = f"{cfg.output_dir}/{exp_name}" checkpoint_dir = os.path.join(save_dir, "checkpoints") module_dir = os.path.join(save_dir, "modules") validation_dir = os.path.join(save_dir, "validation") if accelerator.is_main_process: init_output_dir([save_dir, checkpoint_dir, module_dir, validation_dir]) accelerator.wait_for_everyone() if cfg.weight_dtype == "fp16": weight_dtype = torch.float16 elif cfg.weight_dtype == "bf16": weight_dtype = torch.bfloat16 elif cfg.weight_dtype == "fp32": weight_dtype = torch.float32 else: raise ValueError( f"Do not support weight dtype: {cfg.weight_dtype} during training" ) # Create Models vae = AutoencoderKL.from_pretrained(cfg.vae_model_path).to( "cuda", dtype=weight_dtype ) reference_unet = UNet2DConditionModel.from_pretrained( cfg.base_model_path, subfolder="unet", ).to(device="cuda", dtype=weight_dtype) denoising_unet = UNet3DConditionModel.from_pretrained_2d( cfg.base_model_path, cfg.mm_path, subfolder="unet", unet_additional_kwargs=OmegaConf.to_container( cfg.unet_additional_kwargs), use_landmark=False ).to(device="cuda", dtype=weight_dtype) imageproj = ImageProjModel( cross_attention_dim=denoising_unet.config.cross_attention_dim, clip_embeddings_dim=512, clip_extra_context_tokens=4, ).to(device="cuda", dtype=weight_dtype) face_locator = FaceLocator( conditioning_embedding_channels=320, ).to(device="cuda", dtype=weight_dtype) audioproj = AudioProjModel( seq_len=5, blocks=12, channels=768, intermediate_dim=512, output_dim=768, context_tokens=32, ).to(device="cuda", dtype=weight_dtype) # load module weight from stage 1 stage1_ckpt_dir = cfg.stage1_ckpt_dir denoising_unet.load_state_dict( torch.load( os.path.join(stage1_ckpt_dir, "denoising_unet.pth"), map_location="cpu", ), strict=False, ) reference_unet.load_state_dict( torch.load( os.path.join(stage1_ckpt_dir, "reference_unet.pth"), map_location="cpu", ), strict=False, ) face_locator.load_state_dict( torch.load( os.path.join(stage1_ckpt_dir, "face_locator.pth"), map_location="cpu", ), strict=False, ) imageproj.load_state_dict( torch.load( os.path.join(stage1_ckpt_dir, "imageproj.pth"), map_location="cpu", ), strict=False, ) # Freeze vae.requires_grad_(False) imageproj.requires_grad_(False) reference_unet.requires_grad_(False) denoising_unet.requires_grad_(False) face_locator.requires_grad_(False) audioproj.requires_grad_(True) # Set motion module learnable trainable_modules = cfg.trainable_para for name, module in denoising_unet.named_modules(): if any(trainable_mod in name for trainable_mod in trainable_modules): for params in module.parameters(): params.requires_grad_(True) reference_control_writer = ReferenceAttentionControl( reference_unet, do_classifier_free_guidance=False, mode="write", fusion_blocks="full", ) reference_control_reader = ReferenceAttentionControl( denoising_unet, do_classifier_free_guidance=False, mode="read", fusion_blocks="full", ) net = Net( reference_unet, denoising_unet, face_locator, reference_control_writer, reference_control_reader, imageproj, audioproj, ).to(dtype=weight_dtype) # get noise scheduler train_noise_scheduler, val_noise_scheduler = get_noise_scheduler(cfg) if cfg.solver.enable_xformers_memory_efficient_attention: if is_xformers_available(): reference_unet.enable_xformers_memory_efficient_attention() denoising_unet.enable_xformers_memory_efficient_attention() else: raise ValueError( "xformers is not available. Make sure it is installed correctly" ) if cfg.solver.gradient_checkpointing: reference_unet.enable_gradient_checkpointing() denoising_unet.enable_gradient_checkpointing() if cfg.solver.scale_lr: learning_rate = ( cfg.solver.learning_rate * cfg.solver.gradient_accumulation_steps * cfg.data.train_bs * accelerator.num_processes ) else: learning_rate = cfg.solver.learning_rate # Initialize the optimizer if cfg.solver.use_8bit_adam: try: import bitsandbytes as bnb except ImportError as exc: raise ImportError( "Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`" ) from exc optimizer_cls = bnb.optim.AdamW8bit else: optimizer_cls = torch.optim.AdamW trainable_params = list( filter(lambda p: p.requires_grad, net.parameters())) logger.info(f"Total trainable params {len(trainable_params)}") optimizer = optimizer_cls( trainable_params, lr=learning_rate, betas=(cfg.solver.adam_beta1, cfg.solver.adam_beta2), weight_decay=cfg.solver.adam_weight_decay, eps=cfg.solver.adam_epsilon, ) # Scheduler lr_scheduler = get_scheduler( cfg.solver.lr_scheduler, optimizer=optimizer, num_warmup_steps=cfg.solver.lr_warmup_steps * cfg.solver.gradient_accumulation_steps, num_training_steps=cfg.solver.max_train_steps * cfg.solver.gradient_accumulation_steps, ) # get data loader train_dataset = TalkingVideoDataset( img_size=(cfg.data.train_width, cfg.data.train_height), sample_rate=cfg.data.sample_rate, n_sample_frames=cfg.data.n_sample_frames, n_motion_frames=cfg.data.n_motion_frames, audio_margin=cfg.data.audio_margin, data_meta_paths=cfg.data.train_meta_paths, wav2vec_cfg=cfg.wav2vec_config, ) train_dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=cfg.data.train_bs, shuffle=True, num_workers=16 ) # Prepare everything with our `accelerator`. ( net, optimizer, train_dataloader, lr_scheduler, ) = accelerator.prepare( net, optimizer, train_dataloader, lr_scheduler, ) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil( len(train_dataloader) / cfg.solver.gradient_accumulation_steps ) # Afterwards we recalculate our number of training epochs num_train_epochs = math.ceil( cfg.solver.max_train_steps / num_update_steps_per_epoch ) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if accelerator.is_main_process: run_time = datetime.now().strftime("%Y%m%d-%H%M") accelerator.init_trackers( exp_name, init_kwargs={"mlflow": {"run_name": run_time}}, ) # dump config file mlflow.log_dict( OmegaConf.to_container( cfg), "config.yaml" ) logger.info(f"save config to {save_dir}") OmegaConf.save( cfg, os.path.join(save_dir, "config.yaml") ) # Train! total_batch_size = ( cfg.data.train_bs * accelerator.num_processes * cfg.solver.gradient_accumulation_steps ) logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {num_train_epochs}") logger.info(f" Instantaneous batch size per device = {cfg.data.train_bs}") logger.info( f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}" ) logger.info( f" Gradient Accumulation steps = {cfg.solver.gradient_accumulation_steps}" ) logger.info(f" Total optimization steps = {cfg.solver.max_train_steps}") global_step = 0 first_epoch = 0 # # Potentially load in the weights and states from a previous save if cfg.resume_from_checkpoint: logger.info(f"Loading checkpoint from {checkpoint_dir}") global_step = load_checkpoint(cfg, checkpoint_dir, accelerator) first_epoch = global_step // num_update_steps_per_epoch # Only show the progress bar once on each machine. progress_bar = tqdm( range(global_step, cfg.solver.max_train_steps), disable=not accelerator.is_local_main_process, ) progress_bar.set_description("Steps") for _ in range(first_epoch, num_train_epochs): train_loss = 0.0 t_data_start = time.time() for _, batch in enumerate(train_dataloader): t_data = time.time() - t_data_start with accelerator.accumulate(net): # Convert videos to latent space pixel_values_vid = batch["pixel_values_vid"].to(weight_dtype) pixel_values_face_mask = batch["pixel_values_face_mask"] pixel_values_face_mask = get_attention_mask( pixel_values_face_mask, weight_dtype ) pixel_values_lip_mask = batch["pixel_values_lip_mask"] pixel_values_lip_mask = get_attention_mask( pixel_values_lip_mask, weight_dtype ) pixel_values_full_mask = batch["pixel_values_full_mask"] pixel_values_full_mask = get_attention_mask( pixel_values_full_mask, weight_dtype ) with torch.no_grad(): video_length = pixel_values_vid.shape[1] pixel_values_vid = rearrange( pixel_values_vid, "b f c h w -> (b f) c h w" ) latents = vae.encode(pixel_values_vid).latent_dist.sample() latents = rearrange( latents, "(b f) c h w -> b c f h w", f=video_length ) latents = latents * 0.18215 noise = torch.randn_like(latents) if cfg.noise_offset > 0: noise += cfg.noise_offset * torch.randn( (latents.shape[0], latents.shape[1], 1, 1, 1), device=latents.device, ) bsz = latents.shape[0] # Sample a random timestep for each video timesteps = torch.randint( 0, train_noise_scheduler.num_train_timesteps, (bsz,), device=latents.device, ) timesteps = timesteps.long() # mask for face locator pixel_values_mask = ( batch["pixel_values_mask"].unsqueeze( 1).to(dtype=weight_dtype) ) pixel_values_mask = repeat( pixel_values_mask, "b f c h w -> b (repeat f) c h w", repeat=video_length, ) pixel_values_mask = pixel_values_mask.transpose( 1, 2) uncond_img_fwd = random.random() < cfg.uncond_img_ratio uncond_audio_fwd = random.random() < cfg.uncond_audio_ratio start_frame = random.random() < cfg.start_ratio pixel_values_ref_img = batch["pixel_values_ref_img"].to( dtype=weight_dtype ) # initialize the motion frames as zero maps if start_frame: pixel_values_ref_img[:, 1:] = 0.0 ref_img_and_motion = rearrange( pixel_values_ref_img, "b f c h w -> (b f) c h w" ) with torch.no_grad(): ref_image_latents = vae.encode( ref_img_and_motion ).latent_dist.sample() ref_image_latents = ref_image_latents * 0.18215 image_prompt_embeds = batch["face_emb"].to( dtype=imageproj.dtype, device=imageproj.device ) # add noise noisy_latents = train_noise_scheduler.add_noise( latents, noise, timesteps ) # Get the target for loss depending on the prediction type if train_noise_scheduler.prediction_type == "epsilon": target = noise elif train_noise_scheduler.prediction_type == "v_prediction": target = train_noise_scheduler.get_velocity( latents, noise, timesteps ) else: raise ValueError( f"Unknown prediction type {train_noise_scheduler.prediction_type}" ) # ---- Forward!!! ----- model_pred = net( noisy_latents=noisy_latents, timesteps=timesteps, ref_image_latents=ref_image_latents, face_emb=image_prompt_embeds, mask=pixel_values_mask, full_mask=pixel_values_full_mask, face_mask=pixel_values_face_mask, lip_mask=pixel_values_lip_mask, audio_emb=batch["audio_tensor"].to( dtype=weight_dtype), uncond_img_fwd=uncond_img_fwd, uncond_audio_fwd=uncond_audio_fwd, ) if cfg.snr_gamma == 0: loss = F.mse_loss( model_pred.float(), target.float(), reduction="mean", ) else: snr = compute_snr(train_noise_scheduler, timesteps) if train_noise_scheduler.config.prediction_type == "v_prediction": # Velocity objective requires that we add one to SNR values before we divide by them. snr = snr + 1 mse_loss_weights = ( torch.stack( [snr, cfg.snr_gamma * torch.ones_like(timesteps)], dim=1 ).min(dim=1)[0] / snr ) loss = F.mse_loss( model_pred.float(), target.float(), reduction="mean", ) loss = ( loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights ).mean() # Gather the losses across all processes for logging (if we use distributed training). avg_loss = accelerator.gather( loss.repeat(cfg.data.train_bs)).mean() train_loss += avg_loss.item() / cfg.solver.gradient_accumulation_steps # Backpropagate accelerator.backward(loss) if accelerator.sync_gradients: accelerator.clip_grad_norm_( trainable_params, cfg.solver.max_grad_norm, ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() if accelerator.sync_gradients: reference_control_reader.clear() reference_control_writer.clear() progress_bar.update(1) global_step += 1 accelerator.log({"train_loss": train_loss}, step=global_step) train_loss = 0.0 if global_step % cfg.val.validation_steps == 0 or global_step==1: if accelerator.is_main_process: generator = torch.Generator(device=accelerator.device) generator.manual_seed(cfg.seed) log_validation( accelerator=accelerator, vae=vae, net=net, scheduler=val_noise_scheduler, width=cfg.data.train_width, height=cfg.data.train_height, clip_length=cfg.data.n_sample_frames, cfg=cfg, save_dir=validation_dir, global_step=global_step, times=cfg.single_inference_times if cfg.single_inference_times is not None else None, face_analysis_model_path=cfg.face_analysis_model_path ) logs = { "step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "td": f"{t_data:.2f}s", } t_data_start = time.time() progress_bar.set_postfix(**logs) if ( global_step % cfg.checkpointing_steps == 0 or global_step == cfg.solver.max_train_steps ): # save model save_path = os.path.join( checkpoint_dir, f"checkpoint-{global_step}") if accelerator.is_main_process: delete_additional_ckpt(checkpoint_dir, 30) accelerator.wait_for_everyone() accelerator.save_state(save_path) # save model weight unwrap_net = accelerator.unwrap_model(net) if accelerator.is_main_process: save_checkpoint( unwrap_net, module_dir, "net", global_step, total_limit=30, ) if global_step >= cfg.solver.max_train_steps: break # Create the pipeline using the trained modules and save it. accelerator.wait_for_everyone() accelerator.end_training() def load_config(config_path: str) -> dict: """ Loads the configuration file. Args: config_path (str): Path to the configuration file. Returns: dict: The configuration dictionary. """ if config_path.endswith(".yaml"): return OmegaConf.load(config_path) if config_path.endswith(".py"): return import_filename(config_path).cfg raise ValueError("Unsupported format for config file") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--config", type=str, default="./configs/train/stage2.yaml" ) args = parser.parse_args() try: config = load_config(args.config) train_stage2_process(config) except Exception as e: logging.error("Failed to execute the training process: %s", e)