|
import os
|
|
import cv2
|
|
import time
|
|
import glob
|
|
import argparse
|
|
import scipy
|
|
import numpy as np
|
|
from PIL import Image
|
|
from tqdm import tqdm
|
|
from itertools import cycle
|
|
from torch.multiprocessing import Pool, Process, set_start_method
|
|
|
|
|
|
"""
|
|
brief: face alignment with FFHQ method (https://github.com/NVlabs/ffhq-dataset)
|
|
author: lzhbrian (https://lzhbrian.me)
|
|
date: 2020.1.5
|
|
note: code is heavily borrowed from
|
|
https://github.com/NVlabs/ffhq-dataset
|
|
http://dlib.net/face_landmark_detection.py.html
|
|
requirements:
|
|
apt install cmake
|
|
conda install Pillow numpy scipy
|
|
pip install dlib
|
|
# download face landmark model from:
|
|
# http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
|
|
"""
|
|
|
|
import numpy as np
|
|
from PIL import Image
|
|
import dlib
|
|
|
|
|
|
class Croper:
|
|
def __init__(self, path_of_lm):
|
|
|
|
self.predictor = dlib.shape_predictor(path_of_lm)
|
|
|
|
def get_landmark(self, img_np):
|
|
"""get landmark with dlib
|
|
:return: np.array shape=(68, 2)
|
|
"""
|
|
detector = dlib.get_frontal_face_detector()
|
|
dets = detector(img_np, 1)
|
|
if len(dets) == 0:
|
|
return None
|
|
d = dets[0]
|
|
|
|
shape = self.predictor(img_np, d)
|
|
t = list(shape.parts())
|
|
a = []
|
|
for tt in t:
|
|
a.append([tt.x, tt.y])
|
|
lm = np.array(a)
|
|
return lm
|
|
|
|
def align_face(self, img, lm, output_size=1024):
|
|
"""
|
|
:param filepath: str
|
|
:return: PIL Image
|
|
"""
|
|
lm_chin = lm[0: 17]
|
|
lm_eyebrow_left = lm[17: 22]
|
|
lm_eyebrow_right = lm[22: 27]
|
|
lm_nose = lm[27: 31]
|
|
lm_nostrils = lm[31: 36]
|
|
lm_eye_left = lm[36: 42]
|
|
lm_eye_right = lm[42: 48]
|
|
lm_mouth_outer = lm[48: 60]
|
|
lm_mouth_inner = lm[60: 68]
|
|
|
|
|
|
eye_left = np.mean(lm_eye_left, axis=0)
|
|
eye_right = np.mean(lm_eye_right, axis=0)
|
|
eye_avg = (eye_left + eye_right) * 0.5
|
|
eye_to_eye = eye_right - eye_left
|
|
mouth_left = lm_mouth_outer[0]
|
|
mouth_right = lm_mouth_outer[6]
|
|
mouth_avg = (mouth_left + mouth_right) * 0.5
|
|
eye_to_mouth = mouth_avg - eye_avg
|
|
|
|
|
|
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
|
|
x /= np.hypot(*x)
|
|
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
|
|
y = np.flipud(x) * [-1, 1]
|
|
c = eye_avg + eye_to_mouth * 0.1
|
|
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
|
|
qsize = np.hypot(*x) * 2
|
|
|
|
|
|
shrink = int(np.floor(qsize / output_size * 0.5))
|
|
if shrink > 1:
|
|
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
|
|
img = img.resize(rsize, Image.ANTIALIAS)
|
|
quad /= shrink
|
|
qsize /= shrink
|
|
|
|
|
|
border = max(int(np.rint(qsize * 0.1)), 3)
|
|
crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
|
|
int(np.ceil(max(quad[:, 1]))))
|
|
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]),
|
|
min(crop[3] + border, img.size[1]))
|
|
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
|
|
quad -= crop[0:2]
|
|
|
|
|
|
quad = (quad + 0.5).flatten()
|
|
lx = max(min(quad[0], quad[2]), 0)
|
|
ly = max(min(quad[1], quad[7]), 0)
|
|
rx = min(max(quad[4], quad[6]), img.size[0])
|
|
ry = min(max(quad[3], quad[5]), img.size[0])
|
|
|
|
|
|
return crop, [lx, ly, rx, ry]
|
|
|
|
def crop(self, img_np_list, xsize=512):
|
|
idx = 0
|
|
while idx < len(img_np_list)//2 :
|
|
img_np = img_np_list[idx]
|
|
lm = self.get_landmark(img_np)
|
|
if lm is not None:
|
|
break
|
|
idx += 1
|
|
if lm is None:
|
|
return None
|
|
|
|
crop, quad = self.align_face(img=Image.fromarray(img_np), lm=lm, output_size=xsize)
|
|
clx, cly, crx, cry = crop
|
|
lx, ly, rx, ry = quad
|
|
lx, ly, rx, ry = int(lx), int(ly), int(rx), int(ry)
|
|
for _i in range(len(img_np_list)):
|
|
_inp = img_np_list[_i]
|
|
_inp = _inp[cly:cry, clx:crx]
|
|
_inp = _inp[ly:ry, lx:rx]
|
|
img_np_list[_i] = _inp
|
|
return img_np_list, crop, quad
|
|
|
|
|
|
|