Spanicin commited on
Commit
c5076fd
·
verified ·
1 Parent(s): 2e1f08b

Delete app_concurrent.py

Browse files
Files changed (1) hide show
  1. app_concurrent.py +0 -569
app_concurrent.py DELETED
@@ -1,569 +0,0 @@
1
- from flask import Flask, request, jsonify, Response, stream_with_context
2
- import torch
3
- import shutil
4
- import os
5
- import sys
6
- from argparse import ArgumentParser
7
- from time import strftime
8
- from argparse import Namespace
9
- from src.utils.preprocess import CropAndExtract
10
- from src.test_audio2coeff import Audio2Coeff
11
- from src.facerender.animate import AnimateFromCoeff
12
- from src.generate_batch import get_data
13
- from src.generate_facerender_batch import get_facerender_data
14
- # from src.utils.init_path import init_path
15
- import tempfile
16
- from openai import OpenAI, AsyncOpenAI
17
- import threading
18
- import elevenlabs
19
- from elevenlabs import set_api_key, generate, play, clone, Voice, VoiceSettings
20
- # from flask_cors import CORS, cross_origin
21
- # from flask_swagger_ui import get_swaggerui_blueprint
22
- import uuid
23
- import time
24
- from PIL import Image
25
- import moviepy.editor as mp
26
- import requests
27
- import json
28
- import pickle
29
- from celery import Celery
30
- import concurrent.futures
31
- import multiprocessing
32
-
33
-
34
- # Get the number of CPU cores
35
- cpu_cores = multiprocessing.cpu_count()
36
- print(f"Number of available CPU cores: {cpu_cores}")
37
-
38
-
39
-
40
- class AnimationConfig:
41
- def __init__(self, driven_audio_path, source_image_path, result_folder,pose_style,expression_scale,enhancer,still,preprocess,ref_pose_video_path, image_hardcoded):
42
- self.driven_audio = driven_audio_path
43
- self.source_image = source_image_path
44
- self.ref_eyeblink = None
45
- self.ref_pose = ref_pose_video_path
46
- self.checkpoint_dir = './checkpoints'
47
- self.result_dir = result_folder
48
- self.pose_style = pose_style
49
- self.batch_size = 2
50
- self.expression_scale = expression_scale
51
- self.input_yaw = None
52
- self.input_pitch = None
53
- self.input_roll = None
54
- self.enhancer = enhancer
55
- self.background_enhancer = None
56
- self.cpu = False
57
- self.face3dvis = False
58
- self.still = still
59
- self.preprocess = preprocess
60
- self.verbose = False
61
- self.old_version = False
62
- self.net_recon = 'resnet50'
63
- self.init_path = None
64
- self.use_last_fc = False
65
- self.bfm_folder = './checkpoints/BFM_Fitting/'
66
- self.bfm_model = 'BFM_model_front.mat'
67
- self.focal = 1015.
68
- self.center = 112.
69
- self.camera_d = 10.
70
- self.z_near = 5.
71
- self.z_far = 15.
72
- self.device = 'cpu'
73
- self.image_hardcoded = image_hardcoded
74
-
75
-
76
- app = Flask(__name__)
77
-
78
- MAX_WORKERS = cpu_cores-1
79
- TEMP_DIR = None
80
- start_time = None
81
- chunk_tasks = []
82
- futures = []
83
-
84
- app.config['temp_response'] = None
85
- app.config['generation_thread'] = None
86
- app.config['text_prompt'] = None
87
- app.config['final_video_path'] = None
88
- app.config['final_video_duration'] = None
89
-
90
-
91
-
92
-
93
- def main(args):
94
- print("Entered main function")
95
- pic_path = args.source_image
96
- audio_path = args.driven_audio
97
- save_dir = args.result_dir
98
- pose_style = args.pose_style
99
- device = args.device
100
- batch_size = args.batch_size
101
- input_yaw_list = args.input_yaw
102
- input_pitch_list = args.input_pitch
103
- input_roll_list = args.input_roll
104
- ref_eyeblink = args.ref_eyeblink
105
- ref_pose = args.ref_pose
106
- preprocess = args.preprocess
107
- image_hardcoded = args.image_hardcoded
108
-
109
- dir_path = os.path.dirname(os.path.realpath(__file__))
110
- current_root_path = dir_path
111
- print('current_root_path ',current_root_path)
112
-
113
- # sadtalker_paths = init_path(args.checkpoint_dir, os.path.join(current_root_path, 'src/config'), args.size, args.old_version, args.preprocess)
114
-
115
- path_of_lm_croper = os.path.join(current_root_path, args.checkpoint_dir, 'shape_predictor_68_face_landmarks.dat')
116
- path_of_net_recon_model = os.path.join(current_root_path, args.checkpoint_dir, 'epoch_20.pth')
117
- dir_of_BFM_fitting = os.path.join(current_root_path, args.checkpoint_dir, 'BFM_Fitting')
118
- wav2lip_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'wav2lip.pth')
119
-
120
- audio2pose_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'auido2pose_00140-model.pth')
121
- audio2pose_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2pose.yaml')
122
-
123
- audio2exp_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'auido2exp_00300-model.pth')
124
- audio2exp_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2exp.yaml')
125
-
126
- free_view_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'facevid2vid_00189-model.pth.tar')
127
-
128
- if preprocess == 'full':
129
- mapping_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'mapping_00109-model.pth.tar')
130
- facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender_still.yaml')
131
- else:
132
- mapping_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'mapping_00229-model.pth.tar')
133
- facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender.yaml')
134
-
135
-
136
- # preprocess_model = CropAndExtract(sadtalker_paths, device)
137
- #init model
138
- print(path_of_net_recon_model)
139
- preprocess_model = CropAndExtract(path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting, device)
140
-
141
- # audio_to_coeff = Audio2Coeff(sadtalker_paths, device)
142
- audio_to_coeff = Audio2Coeff(audio2pose_checkpoint, audio2pose_yaml_path,
143
- audio2exp_checkpoint, audio2exp_yaml_path,
144
- wav2lip_checkpoint, device)
145
- # animate_from_coeff = AnimateFromCoeff(sadtalker_paths, device)
146
- animate_from_coeff = AnimateFromCoeff(free_view_checkpoint, mapping_checkpoint,
147
- facerender_yaml_path, device)
148
-
149
- first_frame_dir = os.path.join(save_dir, 'first_frame_dir')
150
- os.makedirs(first_frame_dir, exist_ok=True)
151
- # first_coeff_path, crop_pic_path, crop_info = preprocess_model.generate(pic_path, first_frame_dir, args.preprocess,\
152
- # source_image_flag=True, pic_size=args.size)
153
-
154
-
155
- # fixed_temp_dir = "/tmp/preprocess_data"
156
- # os.makedirs(fixed_temp_dir, exist_ok=True)
157
- # preprocessed_data_path = os.path.join(fixed_temp_dir, "preprocessed_data.pkl")
158
-
159
- # if os.path.exists(preprocessed_data_path) and image_hardcoded == "yes":
160
- # print("Loading preprocessed data...")
161
- # with open(preprocessed_data_path, "rb") as f:
162
- # preprocessed_data = pickle.load(f)
163
- # first_coeff_new_path = preprocessed_data["first_coeff_path"]
164
- # crop_pic_new_path = preprocessed_data["crop_pic_path"]
165
- # crop_info_path = preprocessed_data["crop_info_path"]
166
- # with open(crop_info_path, "rb") as f:
167
- # crop_info = pickle.load(f)
168
-
169
- # print(f"Loaded existing preprocessed data from: {preprocessed_data_path}")
170
-
171
- # else:
172
- # print("Running preprocessing...")
173
- # first_coeff_path, crop_pic_path, crop_info = preprocess_model.generate(pic_path, first_frame_dir, args.preprocess, source_image_flag=True)
174
- # first_coeff_new_path = os.path.join(fixed_temp_dir, os.path.basename(first_coeff_path))
175
- # crop_pic_new_path = os.path.join(fixed_temp_dir, os.path.basename(crop_pic_path))
176
- # crop_info_new_path = os.path.join(fixed_temp_dir, "crop_info.pkl")
177
- # shutil.move(first_coeff_path, first_coeff_new_path)
178
- # shutil.move(crop_pic_path, crop_pic_new_path)
179
-
180
- # with open(crop_info_new_path, "wb") as f:
181
- # pickle.dump(crop_info, f)
182
-
183
- # preprocessed_data = {"first_coeff_path": first_coeff_new_path,
184
- # "crop_pic_path": crop_pic_new_path,
185
- # "crop_info_path": crop_info_new_path}
186
-
187
-
188
- # with open(preprocessed_data_path, "wb") as f:
189
- # pickle.dump(preprocessed_data, f)
190
- # print(f"Preprocessed data saved to: {preprocessed_data_path}")
191
-
192
- first_coeff_path, crop_pic_path, crop_info = preprocess_model.generate(pic_path, first_frame_dir, args.preprocess, source_image_flag=True)
193
-
194
-
195
- print('first_coeff_path ',first_coeff_path)
196
- print('crop_pic_path ',crop_pic_path)
197
- print('crop_info ',crop_info)
198
-
199
- if first_coeff_path is None:
200
- print("Can't get the coeffs of the input")
201
- return
202
-
203
- if ref_eyeblink is not None:
204
- ref_eyeblink_videoname = os.path.splitext(os.path.split(ref_eyeblink)[-1])[0]
205
- ref_eyeblink_frame_dir = os.path.join(save_dir, ref_eyeblink_videoname)
206
- os.makedirs(ref_eyeblink_frame_dir, exist_ok=True)
207
- # ref_eyeblink_coeff_path, _, _ = preprocess_model.generate(ref_eyeblink, ref_eyeblink_frame_dir, args.preprocess, source_image_flag=False)
208
- ref_eyeblink_coeff_path, _, _ = preprocess_model.generate(ref_eyeblink, ref_eyeblink_frame_dir)
209
- else:
210
- ref_eyeblink_coeff_path=None
211
- print('ref_eyeblink_coeff_path',ref_eyeblink_coeff_path)
212
-
213
- if ref_pose is not None:
214
- if ref_pose == ref_eyeblink:
215
- ref_pose_coeff_path = ref_eyeblink_coeff_path
216
- else:
217
- ref_pose_videoname = os.path.splitext(os.path.split(ref_pose)[-1])[0]
218
- ref_pose_frame_dir = os.path.join(save_dir, ref_pose_videoname)
219
- os.makedirs(ref_pose_frame_dir, exist_ok=True)
220
- # ref_pose_coeff_path, _, _ = preprocess_model.generate(ref_pose, ref_pose_frame_dir, args.preprocess, source_image_flag=False)
221
- ref_pose_coeff_path, _, _ = preprocess_model.generate(ref_pose, ref_pose_frame_dir)
222
- else:
223
- ref_pose_coeff_path=None
224
- print('ref_eyeblink_coeff_path',ref_pose_coeff_path)
225
-
226
- batch = get_data(first_coeff_path, audio_path, device, ref_eyeblink_coeff_path, still=args.still)
227
- coeff_path = audio_to_coeff.generate(batch, save_dir, pose_style, ref_pose_coeff_path)
228
-
229
-
230
- if args.face3dvis:
231
- from src.face3d.visualize import gen_composed_video
232
- gen_composed_video(args, device, first_coeff_path, coeff_path, audio_path, os.path.join(save_dir, '3dface.mp4'))
233
-
234
- # data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_path,
235
- # batch_size, input_yaw_list, input_pitch_list, input_roll_list,
236
- # expression_scale=args.expression_scale, still_mode=args.still, preprocess=args.preprocess, size=args.size)
237
-
238
-
239
- data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_path,
240
- batch_size, input_yaw_list, input_pitch_list, input_roll_list,
241
- expression_scale=args.expression_scale, still_mode=args.still, preprocess=args.preprocess)
242
-
243
- # result, base64_video,temp_file_path= animate_from_coeff.generate(data, save_dir, pic_path, crop_info, \
244
- # enhancer=args.enhancer, background_enhancer=args.background_enhancer, preprocess=args.preprocess, img_size=args.size)
245
-
246
-
247
- result, base64_video,temp_file_path,new_audio_path = animate_from_coeff.generate(data, save_dir, pic_path, crop_info, \
248
- enhancer=args.enhancer, background_enhancer=args.background_enhancer, preprocess=args.preprocess)
249
-
250
-
251
- video_clip = mp.VideoFileClip(temp_file_path)
252
- duration = video_clip.duration
253
-
254
- app.config['temp_response'] = base64_video
255
- app.config['final_video_path'] = temp_file_path
256
- app.config['final_video_duration'] = duration
257
-
258
- return base64_video, temp_file_path, duration
259
-
260
-
261
- def create_temp_dir():
262
- return tempfile.TemporaryDirectory()
263
-
264
- def save_uploaded_file(file, filename,TEMP_DIR):
265
- print("Entered save_uploaded_file")
266
- unique_filename = str(uuid.uuid4()) + "_" + filename
267
- file_path = os.path.join(TEMP_DIR.name, unique_filename)
268
- file.save(file_path)
269
- return file_path
270
-
271
- # client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'))
272
-
273
- # def openai_chat_avatar(text_prompt):
274
- # response = client.chat.completions.create(
275
- # model="gpt-4o-mini",
276
- # messages=[{"role": "system", "content": "Answer using the minimum words you can ever use."},
277
- # {"role": "user", "content": f"Hi! I need help with something. Can you assist me with the following: {text_prompt}"},
278
- # ],
279
- # max_tokens = len(text_prompt) + 300 # Use the length of the input text
280
- # # temperature=0.3,
281
- # # stop=["Translate:", "Text:"]
282
- # )
283
- # return response
284
-
285
- def ryzedb_chat_avatar(question):
286
- url = "https://inference.dev.ryzeai.ai/chat/stream"
287
- question = question + ". Summarize and Answer using the minimum words you can ever use."
288
- payload = json.dumps({
289
- "input": {
290
- "chat_history": [],
291
- "app_id": os.getenv('RYZE_APP_ID'),
292
- "question": question
293
- },
294
- "config": {}
295
- })
296
- headers = {
297
- 'Content-Type': 'application/json'
298
- }
299
-
300
- try:
301
- # Send the POST request
302
- response = requests.request("POST", url, headers=headers, data=payload)
303
-
304
- # Check for successful request
305
- response.raise_for_status()
306
-
307
- # Return the response JSON
308
- return response.text
309
-
310
- except requests.exceptions.RequestException as e:
311
- print(f"An error occurred: {e}")
312
- return None
313
-
314
- def custom_cleanup(temp_dir, exclude_dir):
315
- # Iterate over the files and directories in TEMP_DIR
316
- for filename in os.listdir(temp_dir):
317
- file_path = os.path.join(temp_dir, filename)
318
- # Skip the directory we want to exclude
319
- if file_path != exclude_dir:
320
- try:
321
- if os.path.isdir(file_path):
322
- shutil.rmtree(file_path)
323
- else:
324
- os.remove(file_path)
325
- print(f"Deleted: {file_path}")
326
- except Exception as e:
327
- print(f"Failed to delete {file_path}. Reason: {e}")
328
-
329
-
330
- def generate_audio(voice_cloning, voice_gender, text_prompt):
331
- print("generate_audio")
332
- if voice_cloning == 'no':
333
- if voice_gender == 'male':
334
- voice = 'echo'
335
- print('Entering Audio creation using elevenlabs')
336
- set_api_key("92e149985ea2732b4359c74346c3daee")
337
-
338
- audio = generate(text = text_prompt, voice = "Daniel", model = "eleven_multilingual_v2",stream=True, latency=4)
339
- with tempfile.NamedTemporaryFile(suffix=".mp3", prefix="text_to_speech_",dir=TEMP_DIR.name, delete=False) as temp_file:
340
- for chunk in audio:
341
- temp_file.write(chunk)
342
- driven_audio_path = temp_file.name
343
- print('driven_audio_path',driven_audio_path)
344
- print('Audio file saved using elevenlabs')
345
-
346
- else:
347
- voice = 'nova'
348
-
349
- print('Entering Audio creation using whisper')
350
- response = client.audio.speech.create(model="tts-1-hd",
351
- voice=voice,
352
- input = text_prompt)
353
-
354
- print('Audio created using whisper')
355
- with tempfile.NamedTemporaryFile(suffix=".wav", prefix="text_to_speech_",dir=TEMP_DIR.name, delete=False) as temp_file:
356
- driven_audio_path = temp_file.name
357
-
358
- response.write_to_file(driven_audio_path)
359
- print('Audio file saved using whisper')
360
-
361
- elif voice_cloning == 'yes':
362
- set_api_key("92e149985ea2732b4359c74346c3daee")
363
- # voice = clone(name = "User Cloned Voice",
364
- # files = [user_voice_path] )
365
- voice = Voice(voice_id="CEii8R8RxmB0zhAiloZg",name="Marc",settings=VoiceSettings(
366
- stability=0.71, similarity_boost=0.5, style=0.0, use_speaker_boost=True),)
367
-
368
- audio = generate(text = text_prompt, voice = voice, model = "eleven_multilingual_v2",stream=True, latency=4)
369
- with tempfile.NamedTemporaryFile(suffix=".mp3", prefix="cloned_audio_",dir=TEMP_DIR.name, delete=False) as temp_file:
370
- for chunk in audio:
371
- temp_file.write(chunk)
372
- driven_audio_path = temp_file.name
373
- print('driven_audio_path',driven_audio_path)
374
-
375
- return driven_audio_path
376
-
377
- def split_audio(audio_path, chunk_duration=5):
378
- audio_clip = mp.AudioFileClip(audio_path)
379
- total_duration = audio_clip.duration
380
-
381
- audio_chunks = []
382
- for start_time in range(0, int(total_duration), chunk_duration):
383
- end_time = min(start_time + chunk_duration, total_duration)
384
- chunk = audio_clip.subclip(start_time, end_time)
385
- with tempfile.NamedTemporaryFile(suffix=f"_chunk_{start_time}-{end_time}.wav", prefix="audio_chunk_", dir=TEMP_DIR.name, delete=False) as temp_file:
386
- chunk_path = temp_file.name
387
- chunk.write_audiofile(chunk_path)
388
- audio_chunks.append(chunk_path)
389
-
390
- return audio_chunks
391
-
392
-
393
- def process_video_for_chunk_sync(audio_chunk_path, args_dict, chunk_index):
394
- """
395
- Synchronous function to process a video chunk. This will be submitted to concurrent.futures ProcessPoolExecutor.
396
- """
397
- print("Entered process_video_for_chunk_sync")
398
- args = AnimationConfig(
399
- driven_audio_path=args_dict['driven_audio_path'],
400
- source_image_path=args_dict['source_image_path'],
401
- result_folder=args_dict['result_folder'],
402
- pose_style=args_dict['pose_style'],
403
- expression_scale=args_dict['expression_scale'],
404
- enhancer=args_dict['enhancer'],
405
- still=args_dict['still'],
406
- preprocess=args_dict['preprocess'],
407
- ref_pose_video_path=args_dict['ref_pose_video_path'],
408
- image_hardcoded=args_dict['image_hardcoded']
409
- )
410
- args.driven_audio = audio_chunk_path
411
- chunk_save_dir = os.path.join(args.result_dir, f"chunk_{chunk_index}")
412
- os.makedirs(chunk_save_dir, exist_ok=True)
413
-
414
- try:
415
- base64_video, video_chunk_path, duration = main(args)
416
- print(f"Main function returned: {video_chunk_path}, {duration}")
417
- return video_chunk_path
418
- except Exception as e:
419
- print(f"Error in process_video_for_chunk_sync: {str(e)}")
420
- raise
421
-
422
-
423
- @app.route("/run", methods=['POST'])
424
- def generate_video():
425
- global start_time
426
- global chunk_tasks
427
- global futures
428
- start_time = time.time()
429
- global TEMP_DIR
430
- TEMP_DIR = create_temp_dir()
431
- print('request:',request.method)
432
- try:
433
- if request.method == 'POST':
434
- # source_image = request.files['source_image']
435
- image_path = '/home/user/app/images/out.jpg'
436
- source_image = Image.open(image_path)
437
- text_prompt = request.form['text_prompt']
438
-
439
- print('Input text prompt: ',text_prompt)
440
- text_prompt = text_prompt.strip()
441
- if not text_prompt:
442
- return jsonify({'error': 'Input text prompt cannot be blank'}), 400
443
-
444
- voice_cloning = request.form.get('voice_cloning', 'yes')
445
- image_hardcoded = request.form.get('image_hardcoded', 'yes')
446
- chat_model_used = request.form.get('chat_model_used', 'openai')
447
- target_language = request.form.get('target_language', 'original_text')
448
- print('target_language',target_language)
449
- pose_style = int(request.form.get('pose_style', 1))
450
- expression_scale = float(request.form.get('expression_scale', 1))
451
- enhancer = request.form.get('enhancer', None)
452
- voice_gender = request.form.get('voice_gender', 'male')
453
- still_str = request.form.get('still', 'False')
454
- still = still_str.lower() == 'false'
455
- print('still', still)
456
- preprocess = request.form.get('preprocess', 'crop')
457
- print('preprocess selected: ',preprocess)
458
- ref_pose_video = request.files.get('ref_pose', None)
459
-
460
- if chat_model_used == 'ryzedb':
461
- response = ryzedb_chat_avatar(text_prompt)
462
- events = response.split('\r\n\r\n')
463
- content = None
464
- for event in events:
465
- # Split each event block by "\r\n" to get the lines
466
- lines = event.split('\r\n')
467
- if len(lines) > 1 and lines[0] == 'event: data':
468
- # Extract the JSON part from the second line and parse it
469
- json_data = lines[1].replace('data: ', '')
470
- try:
471
- data = json.loads(json_data)
472
- text_prompt = data.get('content')
473
- app.config['text_prompt'] = text_prompt
474
- print('Final output text prompt using ryzedb: ',text_prompt)
475
- break # Exit the loop once content is found
476
- except json.JSONDecodeError:
477
- continue
478
-
479
- else:
480
- # response = openai_chat_avatar(text_prompt)
481
- # text_prompt = response.choices[0].message.content.strip()
482
- app.config['text_prompt'] = text_prompt
483
- print('Final output text prompt using openai: ',text_prompt)
484
-
485
- source_image_path = save_uploaded_file(source_image, 'source_image.png',TEMP_DIR)
486
- print(source_image_path)
487
-
488
- driven_audio_path = generate_audio(voice_cloning, voice_gender, text_prompt)
489
- chunk_duration = 5
490
- print(f"Splitting the audio into {chunk_duration}-second chunks...")
491
- audio_chunks = split_audio(driven_audio_path, chunk_duration=chunk_duration)
492
- print(f"Audio has been split into {len(audio_chunks)} chunks: {audio_chunks}")
493
-
494
- save_dir = tempfile.mkdtemp(dir=TEMP_DIR.name)
495
- result_folder = os.path.join(save_dir, "results")
496
- os.makedirs(result_folder, exist_ok=True)
497
-
498
- ref_pose_video_path = None
499
- if ref_pose_video:
500
- with tempfile.NamedTemporaryFile(suffix=".mp4", prefix="ref_pose_",dir=TEMP_DIR.name, delete=False) as temp_file:
501
- ref_pose_video_path = temp_file.name
502
- ref_pose_video.save(ref_pose_video_path)
503
- print('ref_pose_video_path',ref_pose_video_path)
504
-
505
- except Exception as e:
506
- app.logger.error(f"An error occurred: {e}")
507
- return "An error occurred", 500
508
-
509
- # args = AnimationConfig(driven_audio_path=driven_audio_path, source_image_path=source_image_path, result_folder=result_folder, pose_style=pose_style, expression_scale=expression_scale,enhancer=enhancer,still=still,preprocess=preprocess,ref_pose_video_path=ref_pose_video_path, image_hardcoded=image_hardcoded)
510
- args_dict = {
511
- 'driven_audio_path': driven_audio_path,
512
- 'source_image_path': source_image_path,
513
- 'result_folder': result_folder,
514
- 'pose_style': pose_style,
515
- 'expression_scale': expression_scale,
516
- 'enhancer': enhancer,
517
- 'still': still,
518
- 'preprocess': preprocess,
519
- 'ref_pose_video_path': ref_pose_video_path,
520
- 'image_hardcoded': image_hardcoded,
521
- 'device': 'cuda' if torch.cuda.is_available() else 'cpu'}
522
-
523
- executor = concurrent.futures.ProcessPoolExecutor(max_workers=MAX_WORKERS)
524
- try:
525
- for index, audio_chunk in enumerate(audio_chunks):
526
- print(f"Submitting chunk {index} with audio_chunk: {audio_chunk}")
527
- future = executor.submit(process_video_for_chunk_sync, audio_chunk, args_dict, index)
528
- futures.append(future)
529
- return jsonify({'status': 'Video generation started'}), 200
530
-
531
-
532
- except Exception as e:
533
- return jsonify({'status': 'error', 'message': str(e)}), 500
534
-
535
- @app.route("/stream", methods=['GET'])
536
- def stream_video_chunks():
537
- global futures
538
- print("futures:", futures)
539
-
540
- @stream_with_context
541
- def generate_chunks():
542
- video_chunk_paths = []
543
- for future in concurrent.futures.as_completed(futures): # Wait for each future to complete
544
- try:
545
- video_chunk_path = future.result() # Get the result (video chunk path)
546
- video_chunk_paths.append(video_chunk_path)
547
- yield f'data: {video_chunk_path}\n\n' # Stream the chunk path to frontend
548
- app.logger.info(f"Chunk generated and sent: {video_chunk_path}")
549
- os.remove(video_chunk_path) # Optionally delete the chunk after sending
550
- except Exception as e:
551
- app.logger.error(f"Error while fetching future result: {str(e)}")
552
- yield f'data: error\n\n'
553
-
554
- preprocess_dir = os.path.join("/tmp", "preprocess_data")
555
- custom_cleanup(TEMP_DIR.name, preprocess_dir)
556
- app.logger.info("Temporary files cleaned up, but preprocess_data is retained.")
557
-
558
- # Return the generator that streams the data as it becomes available
559
- return Response(generate_chunks(), content_type='text/event-stream')
560
-
561
-
562
-
563
- @app.route("/health", methods=["GET"])
564
- def health_status():
565
- response = {"online": "true"}
566
- return jsonify(response)
567
- if __name__ == '__main__':
568
- multiprocessing.set_start_method('spawn', force=True)
569
- app.run(debug=True)