File size: 24,250 Bytes
68c48e6 fcb0cff 68c48e6 fcb0cff 68c48e6 fcb0cff 68c48e6 fcb0cff 68c48e6 fcb0cff 68c48e6 fcb0cff 68c48e6 fcb0cff 68c48e6 fcb0cff 68c48e6 fcb0cff 68c48e6 fcb0cff 68c48e6 fcb0cff 68c48e6 fcb0cff 68c48e6 fcb0cff 68c48e6 fcb0cff 68c48e6 fcb0cff 68c48e6 fcb0cff 68c48e6 fcb0cff 68c48e6 fcb0cff 68c48e6 fcb0cff 68c48e6 fcb0cff 68c48e6 fcb0cff 68c48e6 fcb0cff 68c48e6 fcb0cff c0490dd 68c48e6 c0490dd fcb0cff c0490dd 68c48e6 fcb0cff f9d978a fcb0cff 68c48e6 fcb0cff c0490dd fc033d7 68c48e6 fc033d7 68c48e6 fc033d7 68c48e6 fc033d7 b7032e9 fc033d7 b7032e9 fcb0cff c0490dd fcb0cff c0490dd 68c48e6 c0490dd 68c48e6 c0490dd fcb0cff baa503f 68c48e6 baa503f 68c48e6 abb89b9 68c48e6 e5efe2c c0490dd 68c48e6 c0490dd fcb0cff c0490dd bfd8827 fcb0cff c0490dd fcb0cff c0490dd bc47113 c0490dd bfd8827 c0490dd fcb0cff c0490dd fcb0cff c0490dd fcb0cff 68c48e6 fcb0cff c0490dd fcb0cff c0490dd fcb0cff c0490dd fcb0cff 68c48e6 c0490dd bc47113 c0490dd fcb0cff bfd8827 fcb0cff 68c48e6 fcb0cff 68c48e6 bfd8827 fcb0cff 68c48e6 fcb0cff 68c48e6 fcb0cff 68c48e6 fcb0cff 68c48e6 fcb0cff 68c48e6 fcb0cff c0490dd 68c48e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 |
# # import logging
# # import random
# # import warnings
# # import os
# # import gradio as gr
# # import numpy as np
# # import spaces
# # import torch
# # from diffusers import FluxControlNetModel
# # from diffusers.pipelines import FluxControlNetPipeline
# # from gradio_imageslider import ImageSlider
# # from PIL import Image
# # from huggingface_hub import snapshot_download
# # css = """
# # #col-container {
# # margin: 0 auto;
# # max-width: 512px;
# # }
# # """
# # if torch.cuda.is_available():
# # power_device = "GPU"
# # device = "cuda"
# # else:
# # power_device = "CPU"
# # device = "cpu"
# # huggingface_token = os.getenv("HUGGINFACE_TOKEN")
# # model_path = snapshot_download(
# # repo_id="black-forest-labs/FLUX.1-dev",
# # repo_type="model",
# # ignore_patterns=["*.md", "*..gitattributes"],
# # local_dir="FLUX.1-dev",
# # token=huggingface_token, # type a new token-id.
# # )
# # # Load pipeline
# # controlnet = FluxControlNetModel.from_pretrained(
# # "jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
# # ).to(device)
# # pipe = FluxControlNetPipeline.from_pretrained(
# # model_path, controlnet=controlnet, torch_dtype=torch.bfloat16
# # )
# # pipe.to(device)
# # MAX_SEED = 1000000
# # MAX_PIXEL_BUDGET = 1024 * 1024
# # def process_input(input_image, upscale_factor, **kwargs):
# # w, h = input_image.size
# # w_original, h_original = w, h
# # aspect_ratio = w / h
# # was_resized = False
# # if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
# # warnings.warn(
# # f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels."
# # )
# # gr.Info(
# # f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing input to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels budget."
# # )
# # input_image = input_image.resize(
# # (
# # int(aspect_ratio * MAX_PIXEL_BUDGET**0.5 // upscale_factor),
# # int(MAX_PIXEL_BUDGET**0.5 // aspect_ratio // upscale_factor),
# # )
# # )
# # was_resized = True
# # # resize to multiple of 8
# # w, h = input_image.size
# # w = w - w % 8
# # h = h - h % 8
# # return input_image.resize((w, h)), w_original, h_original, was_resized
# # @spaces.GPU#(duration=42)
# # def infer(
# # seed,
# # randomize_seed,
# # input_image,
# # num_inference_steps,
# # upscale_factor,
# # controlnet_conditioning_scale,
# # progress=gr.Progress(track_tqdm=True),
# # ):
# # if randomize_seed:
# # seed = random.randint(0, MAX_SEED)
# # true_input_image = input_image
# # input_image, w_original, h_original, was_resized = process_input(
# # input_image, upscale_factor
# # )
# # # rescale with upscale factor
# # w, h = input_image.size
# # control_image = input_image.resize((w * upscale_factor, h * upscale_factor))
# # generator = torch.Generator().manual_seed(seed)
# # gr.Info("Upscaling image...")
# # image = pipe(
# # prompt="",
# # control_image=control_image,
# # controlnet_conditioning_scale=controlnet_conditioning_scale,
# # num_inference_steps=num_inference_steps,
# # guidance_scale=3.5,
# # height=control_image.size[1],
# # width=control_image.size[0],
# # generator=generator,
# # ).images[0]
# # if was_resized:
# # gr.Info(
# # f"Resizing output image to targeted {w_original * upscale_factor}x{h_original * upscale_factor} size."
# # )
# # # resize to target desired size
# # image = image.resize((w_original * upscale_factor, h_original * upscale_factor))
# # image.save("output.jpg")
# # # convert to numpy
# # return [true_input_image, image, seed]
# # with gr.Blocks(css=css) as demo:
# # # with gr.Column(elem_id="col-container"):
# # gr.Markdown(
# # f"""
# # # ⚡ Flux.1-dev Upscaler ControlNet ⚡
# # This is an interactive demo of [Flux.1-dev Upscaler ControlNet](https://huggingface.co/jasperai/Flux.1-dev-Controlnet-Upscaler) taking as input a low resolution image to generate a high resolution image.
# # Currently running on {power_device}.
# # *Note*: Even though the model can handle higher resolution images, due to GPU memory constraints, this demo was limited to a generated output not exceeding a pixel budget of 1024x1024. If the requested size exceeds that limit, the input will be first resized keeping the aspect ratio such that the output of the controlNet model does not exceed the allocated pixel budget. The output is then resized to the targeted shape using a simple resizing. This may explain some artifacts for high resolution input. To adress this, run the demo locally or consider implementing a tiling strategy. Happy upscaling! 🚀
# # """
# # )
# # with gr.Row():
# # run_button = gr.Button(value="Run")
# # with gr.Row():
# # with gr.Column(scale=4):
# # input_im = gr.Image(label="Input Image", type="pil")
# # with gr.Column(scale=1):
# # num_inference_steps = gr.Slider(
# # label="Number of Inference Steps",
# # minimum=8,
# # maximum=50,
# # step=1,
# # value=28,
# # )
# # upscale_factor = gr.Slider(
# # label="Upscale Factor",
# # minimum=1,
# # maximum=4,
# # step=1,
# # value=4,
# # )
# # controlnet_conditioning_scale = gr.Slider(
# # label="Controlnet Conditioning Scale",
# # minimum=0.1,
# # maximum=1.5,
# # step=0.1,
# # value=0.6,
# # )
# # seed = gr.Slider(
# # label="Seed",
# # minimum=0,
# # maximum=MAX_SEED,
# # step=1,
# # value=42,
# # )
# # randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
# # with gr.Row():
# # result = ImageSlider(label="Input / Output", type="pil", interactive=True)
# # examples = gr.Examples(
# # examples=[
# # # [42, False, "examples/image_1.jpg", 28, 4, 0.6],
# # [42, False, "examples/image_2.jpg", 28, 4, 0.6],
# # # [42, False, "examples/image_3.jpg", 28, 4, 0.6],
# # [42, False, "examples/image_4.jpg", 28, 4, 0.6],
# # # [42, False, "examples/image_5.jpg", 28, 4, 0.6],
# # # [42, False, "examples/image_6.jpg", 28, 4, 0.6],
# # ],
# # inputs=[
# # seed,
# # randomize_seed,
# # input_im,
# # num_inference_steps,
# # upscale_factor,
# # controlnet_conditioning_scale,
# # ],
# # fn=infer,
# # outputs=result,
# # cache_examples="lazy",
# # )
# # # examples = gr.Examples(
# # # examples=[
# # # #[42, False, "examples/image_1.jpg", 28, 4, 0.6],
# # # [42, False, "examples/image_2.jpg", 28, 4, 0.6],
# # # #[42, False, "examples/image_3.jpg", 28, 4, 0.6],
# # # #[42, False, "examples/image_4.jpg", 28, 4, 0.6],
# # # [42, False, "examples/image_5.jpg", 28, 4, 0.6],
# # # [42, False, "examples/image_6.jpg", 28, 4, 0.6],
# # # [42, False, "examples/image_7.jpg", 28, 4, 0.6],
# # # ],
# # # inputs=[
# # # seed,
# # # randomize_seed,
# # # input_im,
# # # num_inference_steps,
# # # upscale_factor,
# # # controlnet_conditioning_scale,
# # # ],
# # # )
# # gr.Markdown("**Disclaimer:**")
# # gr.Markdown(
# # "This demo is only for research purpose. Jasper cannot be held responsible for the generation of NSFW (Not Safe For Work) content through the use of this demo. Users are solely responsible for any content they create, and it is their obligation to ensure that it adheres to appropriate and ethical standards. Jasper provides the tools, but the responsibility for their use lies with the individual user."
# # )
# # gr.on(
# # [run_button.click],
# # fn=infer,
# # inputs=[
# # seed,
# # randomize_seed,
# # input_im,
# # num_inference_steps,
# # upscale_factor,
# # controlnet_conditioning_scale,
# # ],
# # outputs=result,
# # show_api=False,
# # # show_progress="minimal",
# # )
# # demo.queue().launch(share=False, show_api=False)
# import logging
# import random
# import warnings
# import os,shutil,subprocess
# import torch
# import numpy as np
# from diffusers import FluxControlNetModel
# from diffusers.pipelines import FluxControlNetPipeline
# from PIL import Image
# from huggingface_hub import snapshot_download,login
# import io
# import base64
# from flask import Flask, request, jsonify
# from concurrent.futures import ThreadPoolExecutor
# from flask_cors import CORS
# from tqdm import tqdm
# app = Flask(__name__)
# CORS(app)
# # Function to check disk usage
# def check_disk_space():
# result = subprocess.run(['df', '-h'], capture_output=True, text=True)
# print(result.stdout)
# # Function to clear Hugging Face cache
# def clear_huggingface_cache():
# cache_dir = os.path.expanduser('~/.cache/huggingface')
# if os.path.exists(cache_dir):
# shutil.rmtree(cache_dir) # Removes the entire cache directory
# print(f"Cleared Hugging Face cache at: {cache_dir}")
# else:
# print("No Hugging Face cache found.")
# # Check disk space
# check_disk_space()
# # Clear Hugging Face cache
# clear_huggingface_cache()
# # Add config to store base64 images
# app.config['image_outputs'] = {}
# # ThreadPoolExecutor for managing image processing threads
# executor = ThreadPoolExecutor()
# # Determine the device (GPU or CPU)
# if torch.cuda.is_available():
# device = "cuda"
# else:
# device = "cpu"
# # Load model from Huggingface Hub
# huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
# if huggingface_token:
# login(token=huggingface_token)
# else:
# print("Hugging Face token not found in environment variables.")
# print(huggingface_token)
# with tqdm(total=100, desc="Downloading model", bar_format="{l_bar}{bar}| {n_fmt}/{total_fmt}") as pbar:
# model_path = snapshot_download(
# repo_id="black-forest-labs/FLUX.1-dev",
# repo_type="model",
# ignore_patterns=["*.md", "*..gitattributes"],
# local_dir="FLUX.1-dev",
# token=huggingface_token)
# # Load pipeline
# print('controlnet enters')
# with tqdm(total=100, desc="Downloading model", bar_format="{l_bar}{bar}| {n_fmt}/{total_fmt}") as pbar:
# controlnet = FluxControlNetModel.from_pretrained(
# "jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
# ).to(device)
# print('controlnet exits')
# print('pipe enters')
# with tqdm(total=100, desc="Downloading model", bar_format="{l_bar}{bar}| {n_fmt}/{total_fmt}") as pbar:
# pipe = FluxControlNetPipeline.from_pretrained(
# model_path, controlnet=controlnet, torch_dtype=torch.bfloat16
# ).to(device)
# # pipe.to(device)
# print('pipe exits')
# MAX_SEED = 1000000
# MAX_PIXEL_BUDGET = 1024 * 1024
# def process_input(input_image, upscale_factor):
# w, h = input_image.size
# aspect_ratio = w / h
# was_resized = False
# # Resize if input size exceeds the maximum pixel budget
# if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
# warnings.warn(f"Requested output image is too large. Resizing to fit within pixel budget.")
# input_image = input_image.resize(
# (
# int(aspect_ratio * MAX_PIXEL_BUDGET**0.5 // upscale_factor),
# int(MAX_PIXEL_BUDGET**0.5 // aspect_ratio // upscale_factor),
# )
# )
# was_resized = True
# # Adjust dimensions to be a multiple of 8
# w, h = input_image.size
# w = w - w % 8
# h = h - h % 8
# return input_image.resize((w, h)), was_resized
# def run_inference(process_id, input_image, upscale_factor, seed, num_inference_steps, controlnet_conditioning_scale):
# input_image, was_resized = process_input(input_image, upscale_factor)
# # Rescale image for ControlNet processing
# w, h = input_image.size
# control_image = input_image.resize((w * upscale_factor, h * upscale_factor))
# # Set the random generator for inference
# generator = torch.Generator().manual_seed(seed)
# # Perform inference using the pipeline
# image = pipe(
# prompt="",
# control_image=control_image,
# controlnet_conditioning_scale=controlnet_conditioning_scale,
# num_inference_steps=num_inference_steps,
# guidance_scale=3.5,
# height=control_image.size[1],
# width=control_image.size[0],
# generator=generator,
# ).images[0]
# # Resize output image back to the original dimensions if needed
# if was_resized:
# original_size = (input_image.width * upscale_factor, input_image.height * upscale_factor)
# image = image.resize(original_size)
# # Convert the output image to base64
# buffered = io.BytesIO()
# image.save(buffered, format="JPEG")
# image_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
# # Store the result in the shared dictionary
# app.config['image_outputs'][process_id] = image_base64
# @app.route('/infer', methods=['POST'])
# def infer():
# data = request.json
# seed = data.get("seed", 42)
# randomize_seed = data.get("randomize_seed", True)
# num_inference_steps = data.get("num_inference_steps", 28)
# upscale_factor = data.get("upscale_factor", 4)
# controlnet_conditioning_scale = data.get("controlnet_conditioning_scale", 0.6)
# # Randomize seed if specified
# if randomize_seed:
# seed = random.randint(0, MAX_SEED)
# # Load and process the input image
# input_image_data = base64.b64decode(data['input_image'])
# input_image = Image.open(io.BytesIO(input_image_data))
# # Create a unique process ID for this request
# process_id = str(random.randint(1000, 9999))
# # Set the status to 'in_progress'
# app.config['image_outputs'][process_id] = None
# # Run the inference in a separate thread
# executor.submit(run_inference, process_id, input_image, upscale_factor, seed, num_inference_steps, controlnet_conditioning_scale)
# # Return the process ID
# return jsonify({
# "process_id": process_id,
# "message": "Processing started"
# })
# # Modify status endpoint to receive process_id in request body
# @app.route('/status', methods=['POST'])
# def status():
# data = request.json
# process_id = data.get('process_id')
# # Check if process_id was provided
# if not process_id:
# return jsonify({
# "status": "error",
# "message": "Process ID is required"
# }), 400
# # Check if the process_id exists in the dictionary
# if process_id not in app.config['image_outputs']:
# return jsonify({
# "status": "error",
# "message": "Invalid process ID"
# }), 404
# # Check the status of the image processing
# image_base64 = app.config['image_outputs'][process_id]
# if image_base64 is None:
# return jsonify({
# "status": "in_progress"
# })
# else:
# return jsonify({
# "status": "completed",
# "output_image": image_base64
# })
# if __name__ == '__main__':
# app.run(debug=True)
import logging
import random
import warnings
import os
import shutil
import subprocess
import torch
import numpy as np
from diffusers import FluxControlNetModel
from diffusers.pipelines import FluxControlNetPipeline
from PIL import Image
from huggingface_hub import snapshot_download, login
import io
import base64
from flask import Flask, request, jsonify
from concurrent.futures import ThreadPoolExecutor
from flask_cors import CORS
from tqdm import tqdm
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = Flask(__name__)
CORS(app)
# Function to check disk usage
def check_disk_space():
result = subprocess.run(['df', '-h'], capture_output=True, text=True)
logger.info("Disk space usage:\n%s", result.stdout)
# Function to clear Hugging Face cache
def clear_huggingface_cache():
cache_dir = os.path.expanduser('~/.cache/huggingface')
if os.path.exists(cache_dir):
shutil.rmtree(cache_dir) # Removes the entire cache directory
logger.info("Cleared Hugging Face cache at: %s", cache_dir)
else:
logger.info("No Hugging Face cache found.")
# Check disk space
check_disk_space()
# Clear Hugging Face cache
clear_huggingface_cache()
# Add config to store base64 images
app.config['image_outputs'] = {}
# ThreadPoolExecutor for managing image processing threads
executor = ThreadPoolExecutor()
# Determine the device (GPU or CPU)
if torch.cuda.is_available():
device = "cuda"
logger.info("CUDA is available. Using GPU.")
else:
device = "cpu"
logger.info("CUDA is not available. Using CPU.")
# Load model from Huggingface Hub
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
if huggingface_token:
login(token=huggingface_token)
logger.info("Hugging Face token found and logged in.")
else:
logger.warning("Hugging Face token not found in environment variables.")
logger.info("Hugging Face token: %s", huggingface_token)
# Download model using snapshot_download
with tqdm(total=100, desc="Downloading model", bar_format="{l_bar}{bar}| {n_fmt}/{total_fmt}") as pbar:
model_path = snapshot_download(
repo_id="black-forest-labs/FLUX.1-dev",
repo_type="model",
ignore_patterns=["*.md", "*..gitattributes"],
local_dir="FLUX.1-dev",
token=huggingface_token)
logger.info("Model downloaded to: %s", model_path)
# Load pipeline
logger.info('Loading ControlNet model.')
with tqdm(total=100, desc="Downloading ControlNet model", bar_format="{l_bar}{bar}| {n_fmt}/{total_fmt}") as pbar:
controlnet = FluxControlNetModel.from_pretrained(
"jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
).to(device)
logger.info("ControlNet model loaded successfully.")
logger.info('Loading pipeline.')
with tqdm(total=100, desc="Downloading pipeline", bar_format="{l_bar}{bar}| {n_fmt}/{total_fmt}") as pbar:
pipe = FluxControlNetPipeline.from_pretrained(
model_path, controlnet=controlnet, torch_dtype=torch.bfloat16
).to(device)
logger.info("Pipeline loaded successfully.")
MAX_SEED = 1000000
MAX_PIXEL_BUDGET = 1024 * 1024
def process_input(input_image, upscale_factor):
w, h = input_image.size
aspect_ratio = w / h
was_resized = False
# Resize if input size exceeds the maximum pixel budget
if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
warnings.warn(f"Requested output image is too large. Resizing to fit within pixel budget.")
input_image = input_image.resize(
(
int(aspect_ratio * MAX_PIXEL_BUDGET**0.5 // upscale_factor),
int(MAX_PIXEL_BUDGET**0.5 // aspect_ratio // upscale_factor),
)
)
was_resized = True
# Adjust dimensions to be a multiple of 8
w, h = input_image.size
w = w - w % 8
h = h - h % 8
return input_image.resize((w, h)), was_resized
def run_inference(process_id, input_image, upscale_factor, seed, num_inference_steps, controlnet_conditioning_scale):
logger.info("Processing inference for process_id: %s", process_id)
input_image, was_resized = process_input(input_image, upscale_factor)
# Rescale image for ControlNet processing
w, h = input_image.size
control_image = input_image.resize((w * upscale_factor, h * upscale_factor))
# Set the random generator for inference
generator = torch.Generator().manual_seed(seed)
# Perform inference using the pipeline
logger.info("Running pipeline for process_id: %s", process_id)
image = pipe(
prompt="",
control_image=control_image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
num_inference_steps=num_inference_steps,
guidance_scale=3.5,
height=control_image.size[1],
width=control_image.size[0],
generator=generator,
).images[0]
# Resize output image back to the original dimensions if needed
if was_resized:
original_size = (input_image.width * upscale_factor, input_image.height * upscale_factor)
image = image.resize(original_size)
# Convert the output image to base64
buffered = io.BytesIO()
image.save(buffered, format="JPEG")
image_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
# Store the result in the shared dictionary
app.config['image_outputs'][process_id] = image_base64
logger.info("Inference completed for process_id: %s", process_id)
@app.route('/infer', methods=['POST'])
def infer():
data = request.json
seed = data.get("seed", 42)
randomize_seed = data.get("randomize_seed", True)
num_inference_steps = data.get("num_inference_steps", 28)
upscale_factor = data.get("upscale_factor", 4)
controlnet_conditioning_scale = data.get("controlnet_conditioning_scale", 0.6)
# Randomize seed if specified
if randomize_seed:
seed = random.randint(0, MAX_SEED)
logger.info("Seed randomized to: %d", seed)
# Load and process the input image
input_image_data = base64.b64decode(data['input_image'])
input_image = Image.open(io.BytesIO(input_image_data))
# Create a unique process ID for this request
process_id = str(random.randint(1000, 9999))
logger.info("Process started with process_id: %s", process_id)
# Set the status to 'in_progress'
app.config['image_outputs'][process_id] = None
# Run the inference in a separate thread
executor.submit(run_inference, process_id, input_image, upscale_factor, seed, num_inference_steps, controlnet_conditioning_scale)
# Return the process ID
return jsonify({
"process_id": process_id,
"message": "Processing started"
})
# Modify status endpoint to receive process_id in request body
@app.route('/status', methods=['POST'])
def status():
data = request.json
process_id = data.get('process_id')
# Check if process_id was provided
if not process_id:
logger.error("Process ID not provided in request.")
return jsonify({
"status": "error",
"message": "Process ID is required"
}), 400
# Check if the process_id exists in the dictionary
if process_id not in app.config['image_outputs']:
logger.error("Invalid process ID: %s", process_id)
return jsonify({
"status": "error",
"message": "Invalid process ID"
}), 404
# Check the status of the image processing
image_base64 = app.config['image_outputs'][process_id]
if image_base64 is None:
logger.info("Process ID %s is still in progress.", process_id)
return jsonify({
"status": "in_progress"
})
else:
logger.info("Process ID %s completed successfully.", process_id)
return jsonify({
"status": "completed",
"output_image": image_base64
})
if __name__ == '__main__':
app.run(debug=True)
|