Update app.py
Browse files
app.py
CHANGED
@@ -261,12 +261,190 @@
|
|
261 |
|
262 |
|
263 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
import logging
|
265 |
import random
|
266 |
import warnings
|
267 |
import gradio as gr
|
268 |
import os
|
269 |
import shutil
|
|
|
270 |
import subprocess
|
271 |
import torch
|
272 |
import numpy as np
|
@@ -276,34 +454,14 @@ from PIL import Image
|
|
276 |
from huggingface_hub import snapshot_download, login
|
277 |
import io
|
278 |
import base64
|
279 |
-
import
|
280 |
|
281 |
# Configure logging
|
282 |
logging.basicConfig(level=logging.INFO)
|
283 |
logger = logging.getLogger(__name__)
|
284 |
|
285 |
-
#
|
286 |
-
|
287 |
-
result = subprocess.run(['df', '-h'], capture_output=True, text=True)
|
288 |
-
logger.info("Disk space usage:\n%s", result.stdout)
|
289 |
-
|
290 |
-
# Function to clear Hugging Face cache
|
291 |
-
def clear_huggingface_cache():
|
292 |
-
cache_dir = os.path.expanduser('~/.cache/huggingface')
|
293 |
-
if os.path.exists(cache_dir):
|
294 |
-
shutil.rmtree(cache_dir) # Removes the entire cache directory
|
295 |
-
logger.info("Cleared Hugging Face cache at: %s", cache_dir)
|
296 |
-
else:
|
297 |
-
logger.info("No Hugging Face cache found.")
|
298 |
-
|
299 |
-
# Check disk space
|
300 |
-
check_disk_space()
|
301 |
-
|
302 |
-
# Clear Hugging Face cache
|
303 |
-
clear_huggingface_cache()
|
304 |
-
|
305 |
-
# Add config to store base64 images
|
306 |
-
image_outputs = {}
|
307 |
|
308 |
# Determine the device (GPU or CPU)
|
309 |
if torch.cuda.is_available():
|
@@ -323,8 +481,8 @@ else:
|
|
323 |
|
324 |
# Download model using snapshot_download
|
325 |
model_path = snapshot_download(
|
326 |
-
repo_id="black-forest-labs/FLUX.1-dev",
|
327 |
-
repo_type="model",
|
328 |
ignore_patterns=["*.md", "*..gitattributes"],
|
329 |
local_dir="FLUX.1-dev",
|
330 |
token=huggingface_token
|
@@ -347,6 +505,7 @@ logger.info("Pipeline loaded successfully.")
|
|
347 |
MAX_SEED = 1000000
|
348 |
MAX_PIXEL_BUDGET = 1024 * 1024
|
349 |
|
|
|
350 |
def process_input(input_image, upscale_factor):
|
351 |
w, h = input_image.size
|
352 |
aspect_ratio = w / h
|
@@ -369,9 +528,11 @@ def process_input(input_image, upscale_factor):
|
|
369 |
h = h - h % 8
|
370 |
|
371 |
return input_image.resize((w, h)), was_resized
|
|
|
372 |
|
|
|
373 |
def run_inference(input_image, upscale_factor, seed, num_inference_steps, controlnet_conditioning_scale):
|
374 |
-
logger.info("
|
375 |
input_image, was_resized = process_input(input_image, upscale_factor)
|
376 |
|
377 |
# Rescale image for ControlNet processing
|
@@ -382,7 +543,7 @@ def run_inference(input_image, upscale_factor, seed, num_inference_steps, contro
|
|
382 |
generator = torch.Generator().manual_seed(seed)
|
383 |
|
384 |
# Perform inference using the pipeline
|
385 |
-
logger.info("Running pipeline")
|
386 |
image = pipe(
|
387 |
prompt="",
|
388 |
control_image=control_image,
|
@@ -399,43 +560,34 @@ def run_inference(input_image, upscale_factor, seed, num_inference_steps, contro
|
|
399 |
original_size = (input_image.width * upscale_factor, input_image.height * upscale_factor)
|
400 |
image = image.resize(original_size)
|
401 |
|
402 |
-
|
403 |
-
buffered = io.BytesIO()
|
404 |
-
image.save(buffered, format="JPEG")
|
405 |
-
image_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
406 |
|
407 |
-
|
408 |
-
|
|
|
409 |
|
410 |
-
# Define
|
411 |
-
|
412 |
-
|
413 |
-
seed =
|
414 |
-
|
|
|
415 |
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
#
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
],
|
431 |
-
outputs=gr.Image(label="Output Image"),
|
432 |
-
title="ControlNet Image Upscaling",
|
433 |
-
description="Upload an image to upscale using the ControlNet model."
|
434 |
-
)
|
435 |
|
436 |
-
# Launch Gradio app
|
437 |
-
if __name__ == '__main__':
|
438 |
-
iface.launch()
|
439 |
|
440 |
|
441 |
|
|
|
261 |
|
262 |
|
263 |
|
264 |
+
# import logging
|
265 |
+
# import random
|
266 |
+
# import warnings
|
267 |
+
# import gradio as gr
|
268 |
+
# import os
|
269 |
+
# import shutil
|
270 |
+
# import subprocess
|
271 |
+
# import torch
|
272 |
+
# import numpy as np
|
273 |
+
# from diffusers import FluxControlNetModel
|
274 |
+
# from diffusers.pipelines import FluxControlNetPipeline
|
275 |
+
# from PIL import Image
|
276 |
+
# from huggingface_hub import snapshot_download, login
|
277 |
+
# import io
|
278 |
+
# import base64
|
279 |
+
# import threading
|
280 |
+
|
281 |
+
# # Configure logging
|
282 |
+
# logging.basicConfig(level=logging.INFO)
|
283 |
+
# logger = logging.getLogger(__name__)
|
284 |
+
|
285 |
+
# # Function to check disk usage
|
286 |
+
# def check_disk_space():
|
287 |
+
# result = subprocess.run(['df', '-h'], capture_output=True, text=True)
|
288 |
+
# logger.info("Disk space usage:\n%s", result.stdout)
|
289 |
+
|
290 |
+
# # Function to clear Hugging Face cache
|
291 |
+
# def clear_huggingface_cache():
|
292 |
+
# cache_dir = os.path.expanduser('~/.cache/huggingface')
|
293 |
+
# if os.path.exists(cache_dir):
|
294 |
+
# shutil.rmtree(cache_dir) # Removes the entire cache directory
|
295 |
+
# logger.info("Cleared Hugging Face cache at: %s", cache_dir)
|
296 |
+
# else:
|
297 |
+
# logger.info("No Hugging Face cache found.")
|
298 |
+
|
299 |
+
# # Check disk space
|
300 |
+
# check_disk_space()
|
301 |
+
|
302 |
+
# # Clear Hugging Face cache
|
303 |
+
# clear_huggingface_cache()
|
304 |
+
|
305 |
+
# # Add config to store base64 images
|
306 |
+
# image_outputs = {}
|
307 |
+
|
308 |
+
# # Determine the device (GPU or CPU)
|
309 |
+
# if torch.cuda.is_available():
|
310 |
+
# device = "cuda"
|
311 |
+
# logger.info("CUDA is available. Using GPU.")
|
312 |
+
# else:
|
313 |
+
# device = "cpu"
|
314 |
+
# logger.info("CUDA is not available. Using CPU.")
|
315 |
+
|
316 |
+
# # Load model from Huggingface Hub
|
317 |
+
# huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
318 |
+
# if huggingface_token:
|
319 |
+
# login(token=huggingface_token)
|
320 |
+
# logger.info("Hugging Face token found and logged in.")
|
321 |
+
# else:
|
322 |
+
# logger.warning("Hugging Face token not found in environment variables.")
|
323 |
+
|
324 |
+
# # Download model using snapshot_download
|
325 |
+
# model_path = snapshot_download(
|
326 |
+
# repo_id="black-forest-labs/FLUX.1-dev",
|
327 |
+
# repo_type="model",
|
328 |
+
# ignore_patterns=["*.md", "*..gitattributes"],
|
329 |
+
# local_dir="FLUX.1-dev",
|
330 |
+
# token=huggingface_token
|
331 |
+
# )
|
332 |
+
# logger.info("Model downloaded to: %s", model_path)
|
333 |
+
|
334 |
+
# # Load pipeline
|
335 |
+
# logger.info('Loading ControlNet model.')
|
336 |
+
# controlnet = FluxControlNetModel.from_pretrained(
|
337 |
+
# "jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
|
338 |
+
# ).to(device)
|
339 |
+
# logger.info("ControlNet model loaded successfully.")
|
340 |
+
|
341 |
+
# logger.info('Loading pipeline.')
|
342 |
+
# pipe = FluxControlNetPipeline.from_pretrained(
|
343 |
+
# model_path, controlnet=controlnet, torch_dtype=torch.bfloat16
|
344 |
+
# ).to(device)
|
345 |
+
# logger.info("Pipeline loaded successfully.")
|
346 |
+
|
347 |
+
# MAX_SEED = 1000000
|
348 |
+
# MAX_PIXEL_BUDGET = 1024 * 1024
|
349 |
+
|
350 |
+
# def process_input(input_image, upscale_factor):
|
351 |
+
# w, h = input_image.size
|
352 |
+
# aspect_ratio = w / h
|
353 |
+
# was_resized = False
|
354 |
+
|
355 |
+
# # Resize if input size exceeds the maximum pixel budget
|
356 |
+
# if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
|
357 |
+
# warnings.warn(f"Requested output image is too large. Resizing to fit within pixel budget.")
|
358 |
+
# input_image = input_image.resize(
|
359 |
+
# (
|
360 |
+
# int(aspect_ratio * MAX_PIXEL_BUDGET**0.5 // upscale_factor),
|
361 |
+
# int(MAX_PIXEL_BUDGET**0.5 // aspect_ratio // upscale_factor),
|
362 |
+
# )
|
363 |
+
# )
|
364 |
+
# was_resized = True
|
365 |
+
|
366 |
+
# # Adjust dimensions to be a multiple of 8
|
367 |
+
# w, h = input_image.size
|
368 |
+
# w = w - w % 8
|
369 |
+
# h = h - h % 8
|
370 |
+
|
371 |
+
# return input_image.resize((w, h)), was_resized
|
372 |
+
|
373 |
+
# def run_inference(input_image, upscale_factor, seed, num_inference_steps, controlnet_conditioning_scale):
|
374 |
+
# logger.info("Running inference")
|
375 |
+
# input_image, was_resized = process_input(input_image, upscale_factor)
|
376 |
+
|
377 |
+
# # Rescale image for ControlNet processing
|
378 |
+
# w, h = input_image.size
|
379 |
+
# control_image = input_image.resize((w * upscale_factor, h * upscale_factor))
|
380 |
+
|
381 |
+
# # Set the random generator for inference
|
382 |
+
# generator = torch.Generator().manual_seed(seed)
|
383 |
+
|
384 |
+
# # Perform inference using the pipeline
|
385 |
+
# logger.info("Running pipeline")
|
386 |
+
# image = pipe(
|
387 |
+
# prompt="",
|
388 |
+
# control_image=control_image,
|
389 |
+
# controlnet_conditioning_scale=controlnet_conditioning_scale,
|
390 |
+
# num_inference_steps=num_inference_steps,
|
391 |
+
# guidance_scale=3.5,
|
392 |
+
# height=control_image.size[1],
|
393 |
+
# width=control_image.size[0],
|
394 |
+
# generator=generator,
|
395 |
+
# ).images[0]
|
396 |
+
|
397 |
+
# # Resize output image back to the original dimensions if needed
|
398 |
+
# if was_resized:
|
399 |
+
# original_size = (input_image.width * upscale_factor, input_image.height * upscale_factor)
|
400 |
+
# image = image.resize(original_size)
|
401 |
+
|
402 |
+
# # Convert the output image to base64
|
403 |
+
# buffered = io.BytesIO()
|
404 |
+
# image.save(buffered, format="JPEG")
|
405 |
+
# image_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
406 |
+
|
407 |
+
# logger.info("Inference completed")
|
408 |
+
# return image_base64
|
409 |
+
|
410 |
+
# # Define Gradio interface
|
411 |
+
# def gradio_interface(input_image, upscale_factor=4, seed=42, num_inference_steps=28, controlnet_conditioning_scale=0.6):
|
412 |
+
# if randomize_seed:
|
413 |
+
# seed = random.randint(0, MAX_SEED)
|
414 |
+
# logger.info("Seed randomized to: %d", seed)
|
415 |
+
|
416 |
+
# # Run inference
|
417 |
+
# output_image_base64 = run_inference(input_image, upscale_factor, seed, num_inference_steps, controlnet_conditioning_scale)
|
418 |
+
|
419 |
+
# return Image.open(io.BytesIO(base64.b64decode(output_image_base64)))
|
420 |
+
|
421 |
+
# # Create Gradio interface
|
422 |
+
# iface = gr.Interface(
|
423 |
+
# fn=gradio_interface,
|
424 |
+
# inputs=[
|
425 |
+
# gr.Image(type="pil", label="Input Image"),
|
426 |
+
# gr.Slider(min=1, max=8, step=1, label="Upscale Factor"),
|
427 |
+
# gr.Slider(min=0, max=MAX_SEED, step=1, label="Seed"),
|
428 |
+
# gr.Slider(min=1, max=100, step=1, label="Inference Steps"),
|
429 |
+
# gr.Slider(min=0.0, max=1.0, step=0.1, label="ControlNet Conditioning Scale")
|
430 |
+
# ],
|
431 |
+
# outputs=gr.Image(label="Output Image"),
|
432 |
+
# title="ControlNet Image Upscaling",
|
433 |
+
# description="Upload an image to upscale using the ControlNet model."
|
434 |
+
# )
|
435 |
+
|
436 |
+
# # Launch Gradio app
|
437 |
+
# if __name__ == '__main__':
|
438 |
+
# iface.launch()
|
439 |
+
|
440 |
+
|
441 |
import logging
|
442 |
import random
|
443 |
import warnings
|
444 |
import gradio as gr
|
445 |
import os
|
446 |
import shutil
|
447 |
+
import spaces
|
448 |
import subprocess
|
449 |
import torch
|
450 |
import numpy as np
|
|
|
454 |
from huggingface_hub import snapshot_download, login
|
455 |
import io
|
456 |
import base64
|
457 |
+
from concurrent.futures import ThreadPoolExecutor
|
458 |
|
459 |
# Configure logging
|
460 |
logging.basicConfig(level=logging.INFO)
|
461 |
logger = logging.getLogger(__name__)
|
462 |
|
463 |
+
# ThreadPoolExecutor for managing image processing threads
|
464 |
+
executor = ThreadPoolExecutor()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
465 |
|
466 |
# Determine the device (GPU or CPU)
|
467 |
if torch.cuda.is_available():
|
|
|
481 |
|
482 |
# Download model using snapshot_download
|
483 |
model_path = snapshot_download(
|
484 |
+
repo_id="black-forest-labs/FLUX.1-dev",
|
485 |
+
repo_type="model",
|
486 |
ignore_patterns=["*.md", "*..gitattributes"],
|
487 |
local_dir="FLUX.1-dev",
|
488 |
token=huggingface_token
|
|
|
505 |
MAX_SEED = 1000000
|
506 |
MAX_PIXEL_BUDGET = 1024 * 1024
|
507 |
|
508 |
+
@spaces.GPU
|
509 |
def process_input(input_image, upscale_factor):
|
510 |
w, h = input_image.size
|
511 |
aspect_ratio = w / h
|
|
|
528 |
h = h - h % 8
|
529 |
|
530 |
return input_image.resize((w, h)), was_resized
|
531 |
+
|
532 |
|
533 |
+
@spaces.GPU
|
534 |
def run_inference(input_image, upscale_factor, seed, num_inference_steps, controlnet_conditioning_scale):
|
535 |
+
logger.info("Processing inference.")
|
536 |
input_image, was_resized = process_input(input_image, upscale_factor)
|
537 |
|
538 |
# Rescale image for ControlNet processing
|
|
|
543 |
generator = torch.Generator().manual_seed(seed)
|
544 |
|
545 |
# Perform inference using the pipeline
|
546 |
+
logger.info("Running pipeline.")
|
547 |
image = pipe(
|
548 |
prompt="",
|
549 |
control_image=control_image,
|
|
|
560 |
original_size = (input_image.width * upscale_factor, input_image.height * upscale_factor)
|
561 |
image = image.resize(original_size)
|
562 |
|
563 |
+
return image
|
|
|
|
|
|
|
564 |
|
565 |
+
def run_gradio_app():
|
566 |
+
with gr.Blocks() as app:
|
567 |
+
gr.Markdown("## Image Upscaler using ControlNet")
|
568 |
|
569 |
+
# Define the inputs and outputs
|
570 |
+
input_image = gr.Image(type="pil", label="Input Image")
|
571 |
+
upscale_factor = gr.Slider(minimum=1, maximum=8, step=1, label="Upscale Factor")
|
572 |
+
seed = gr.Slider(minimum=0, maximum=100, step=1, label="Seed")
|
573 |
+
num_inference_steps = gr.Slider(minimum=1, maximum=100, step=1, label="Inference Steps")
|
574 |
+
controlnet_conditioning_scale = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label="ControlNet Conditioning Scale")
|
575 |
|
576 |
+
output_image = gr.Image(type="pil", label="Output Image")
|
577 |
+
|
578 |
+
# Create a button to trigger the processing
|
579 |
+
submit_button = gr.Button("Upscale Image")
|
580 |
+
|
581 |
+
# Define the function to run when the button is clicked
|
582 |
+
submit_button.click(run_inference,
|
583 |
+
inputs=[input_image, upscale_factor, seed, num_inference_steps, controlnet_conditioning_scale],
|
584 |
+
outputs=output_image)
|
585 |
+
|
586 |
+
app.launch()
|
587 |
+
|
588 |
+
if __name__ == "__main__":
|
589 |
+
run_gradio_app()
|
|
|
|
|
|
|
|
|
|
|
590 |
|
|
|
|
|
|
|
591 |
|
592 |
|
593 |
|