Spanicin commited on
Commit
f81b3d1
·
verified ·
1 Parent(s): 6a500ed

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -40
app.py CHANGED
@@ -15,7 +15,6 @@ import base64
15
  from flask import Flask, request, jsonify
16
  from concurrent.futures import ThreadPoolExecutor
17
  from flask_cors import CORS
18
- from tqdm import tqdm
19
 
20
  # Configure logging
21
  logging.basicConfig(level=logging.INFO)
@@ -69,25 +68,25 @@ else:
69
  logger.info("Hugging Face token: %s", huggingface_token)
70
 
71
  # Download model using snapshot_download
72
- #with tqdm(total=100, desc="Downloading model", bar_format="{l_bar}{bar}| {n_fmt}/{total_fmt}") as pbar:
73
  model_path = snapshot_download(
74
  repo_id="black-forest-labs/FLUX.1-dev",
75
  repo_type="model",
76
  ignore_patterns=["*.md", "*..gitattributes"],
77
  local_dir="FLUX.1-dev",
78
  token=huggingface_token)
79
- logger.info("Model downloaded to: %s", model_path)
80
 
81
  # Load pipeline
82
  logger.info('Loading ControlNet model.')
83
- #with tqdm(total=100, desc="Downloading ControlNet model", bar_format="{l_bar}{bar}| {n_fmt}/{total_fmt}") as pbar:
84
  controlnet = FluxControlNetModel.from_pretrained(
85
  "jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
86
  ).to(device)
87
  logger.info("ControlNet model loaded successfully.")
88
 
89
  logger.info('Loading pipeline.')
90
- #with tqdm(total=100, desc="Downloading pipeline", bar_format="{l_bar}{bar}| {n_fmt}/{total_fmt}") as pbar:
91
  pipe = FluxControlNetPipeline.from_pretrained(
92
  model_path, controlnet=controlnet, torch_dtype=torch.bfloat16
93
  ).to(device)
@@ -157,40 +156,6 @@ def run_inference(process_id, input_image, upscale_factor, seed, num_inference_s
157
  app.config['image_outputs'][process_id] = image_base64
158
  logger.info("Inference completed for process_id: %s", process_id)
159
 
160
- # @app.route('/infer', methods=['POST'])
161
- # def infer():
162
- # data = request.json
163
- # seed = data.get("seed", 42)
164
- # randomize_seed = data.get("randomize_seed", True)
165
- # num_inference_steps = data.get("num_inference_steps", 28)
166
- # upscale_factor = data.get("upscale_factor", 4)
167
- # controlnet_conditioning_scale = data.get("controlnet_conditioning_scale", 0.6)
168
-
169
- # # Randomize seed if specified
170
- # if randomize_seed:
171
- # seed = random.randint(0, MAX_SEED)
172
- # logger.info("Seed randomized to: %d", seed)
173
-
174
- # # Load and process the input image
175
- # input_image_data = base64.b64decode(data['input_image'])
176
- # input_image = Image.open(io.BytesIO(input_image_data))
177
-
178
- # # Create a unique process ID for this request
179
- # process_id = str(random.randint(1000, 9999))
180
- # logger.info("Process started with process_id: %s", process_id)
181
-
182
- # # Set the status to 'in_progress'
183
- # app.config['image_outputs'][process_id] = None
184
-
185
- # # Run the inference in a separate thread
186
- # executor.submit(run_inference, process_id, input_image, upscale_factor, seed, num_inference_steps, controlnet_conditioning_scale)
187
-
188
- # # Return the process ID
189
- # return jsonify({
190
- # "process_id": process_id,
191
- # "message": "Processing started"
192
- # })
193
-
194
  @app.route('/infer', methods=['POST'])
195
  def infer():
196
  # Check if the file was provided in the form-data
@@ -216,7 +181,6 @@ def infer():
216
  input_image = Image.open(file)
217
  buffered = io.BytesIO()
218
  input_image.save(buffered, format="JPEG")
219
- #input_image_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
220
 
221
  # Retrieve additional parameters from the request (if any)
222
  seed = request.form.get("seed", 42, type=int)
 
15
  from flask import Flask, request, jsonify
16
  from concurrent.futures import ThreadPoolExecutor
17
  from flask_cors import CORS
 
18
 
19
  # Configure logging
20
  logging.basicConfig(level=logging.INFO)
 
68
  logger.info("Hugging Face token: %s", huggingface_token)
69
 
70
  # Download model using snapshot_download
71
+
72
  model_path = snapshot_download(
73
  repo_id="black-forest-labs/FLUX.1-dev",
74
  repo_type="model",
75
  ignore_patterns=["*.md", "*..gitattributes"],
76
  local_dir="FLUX.1-dev",
77
  token=huggingface_token)
78
+ logger.info("Model downloaded to: %s", model_path)
79
 
80
  # Load pipeline
81
  logger.info('Loading ControlNet model.')
82
+
83
  controlnet = FluxControlNetModel.from_pretrained(
84
  "jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
85
  ).to(device)
86
  logger.info("ControlNet model loaded successfully.")
87
 
88
  logger.info('Loading pipeline.')
89
+
90
  pipe = FluxControlNetPipeline.from_pretrained(
91
  model_path, controlnet=controlnet, torch_dtype=torch.bfloat16
92
  ).to(device)
 
156
  app.config['image_outputs'][process_id] = image_base64
157
  logger.info("Inference completed for process_id: %s", process_id)
158
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
159
  @app.route('/infer', methods=['POST'])
160
  def infer():
161
  # Check if the file was provided in the form-data
 
181
  input_image = Image.open(file)
182
  buffered = io.BytesIO()
183
  input_image.save(buffered, format="JPEG")
 
184
 
185
  # Retrieve additional parameters from the request (if any)
186
  seed = request.form.get("seed", 42, type=int)