Upload ./requirements.txt with huggingface_hub
Browse files- requirements.txt +121 -5
requirements.txt
CHANGED
@@ -1,5 +1,121 @@
|
|
1 |
-
streamlit
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from sklearn.utils.extmath import softmax
|
6 |
+
import open_clip
|
7 |
+
|
8 |
+
#from transformers import CLIPProcessor, CLIPModel
|
9 |
+
|
10 |
+
knnpath = '20241204-ams-no-env-open_clip_ViT-H-14-378-quickgelu.npz'
|
11 |
+
clip_model_name = 'ViT-H-14-378-quickgelu'
|
12 |
+
pretrained_name = 'dfn5b'
|
13 |
+
|
14 |
+
categories = ['walkability', 'bikeability', 'pleasantness', 'greenness', 'safety']
|
15 |
+
|
16 |
+
# Set page config
|
17 |
+
st.set_page_config(
|
18 |
+
page_title="Percept",
|
19 |
+
layout="wide"
|
20 |
+
)
|
21 |
+
|
22 |
+
debug = True
|
23 |
+
|
24 |
+
#st.write("Available models:", open_clip.list_models())
|
25 |
+
|
26 |
+
@st.cache_resource
|
27 |
+
def load_model():
|
28 |
+
"""Load the OpenCLIP model and return model and processor"""
|
29 |
+
model, _, preprocess = open_clip.create_model_and_transforms(
|
30 |
+
clip_model_name, pretrained=pretrained_name
|
31 |
+
)
|
32 |
+
tokenizer = open_clip.get_tokenizer(clip_model_name)
|
33 |
+
return model, preprocess, tokenizer
|
34 |
+
|
35 |
+
def process_image(image, preprocess):
|
36 |
+
"""Process image and return tensor"""
|
37 |
+
if isinstance(image, str):
|
38 |
+
# If image is a URL
|
39 |
+
response = requests.get(image)
|
40 |
+
image = Image.open(BytesIO(response.content))
|
41 |
+
# Ensure image is in RGB mode
|
42 |
+
if image.mode != 'RGB':
|
43 |
+
image = image.convert('RGB')
|
44 |
+
processed_image = preprocess(image).unsqueeze(0)
|
45 |
+
return processed_image
|
46 |
+
|
47 |
+
def knn_get_score(knn, k, cat, vec):
|
48 |
+
allvecs = knn[f'{cat}_vecs']
|
49 |
+
if debug: st.write('allvecs.shape', allvecs.shape)
|
50 |
+
scores = knn[f'{cat}_scores']
|
51 |
+
if debug: st.write('scores.shape', scores.shape)
|
52 |
+
# Compute cosine similiarity of vec against allvecs
|
53 |
+
# (both are already normalized)
|
54 |
+
cos_sim_table = vec @ allvecs.T
|
55 |
+
if debug: st.write('cos_sim_table.shape', cos_sim_table.shape)
|
56 |
+
# Get sorted array indices by similiarity in descending order
|
57 |
+
sortinds = np.flip(np.argsort(cos_sim_table, axis=1), axis=1)
|
58 |
+
if debug: st.write('sortinds.shape', sortinds.shape)
|
59 |
+
# Get corresponding scores for the sorted vectors
|
60 |
+
kscores = scores[sortinds][:k]
|
61 |
+
if debug: st.write('kscores.shape', kscores.shape)
|
62 |
+
# Get actual sorted similiarity scores
|
63 |
+
ksims = cos_sim_table[:, sortinds][:,:k]
|
64 |
+
if debug: st.write('ksims.shape', ksims.shape)
|
65 |
+
# Apply normalization after exponential formula
|
66 |
+
ksims = softmax(10**ksims)
|
67 |
+
# Weighted sum
|
68 |
+
kweightedscore = np.sum(kscores * ksims)
|
69 |
+
return kweightedscore
|
70 |
+
|
71 |
+
|
72 |
+
@st.cache_resource
|
73 |
+
def load_knn():
|
74 |
+
return np.load(knnpath)
|
75 |
+
|
76 |
+
def main():
|
77 |
+
st.title("Percept: Human Perception of Street View Image Analyzer")
|
78 |
+
|
79 |
+
try:
|
80 |
+
with st.spinner('Loading CLIP model... This may take a moment.'):
|
81 |
+
model, preprocess, tokenizer = load_model()
|
82 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
83 |
+
model = model.to(device)
|
84 |
+
except Exception as e:
|
85 |
+
st.error(f"Error loading model: {str(e)}")
|
86 |
+
st.info("Please make sure you have enough memory and the correct dependencies installed.")
|
87 |
+
|
88 |
+
with st.spinner('Loading KNN model... This may take a moment.'):
|
89 |
+
knn = load_knn()
|
90 |
+
if debug: st.write(knn['walkability_vecs'].shape)
|
91 |
+
|
92 |
+
file = st.file_uploader('Upload An Image')
|
93 |
+
|
94 |
+
if file:
|
95 |
+
try:
|
96 |
+
image = Image.open(file)
|
97 |
+
|
98 |
+
st.image(image, caption="Uploaded Image", width=640)
|
99 |
+
|
100 |
+
# Process image
|
101 |
+
with st.spinner('Processing image...'):
|
102 |
+
processed_image = process_image(image, preprocess)
|
103 |
+
processed_image = processed_image.to(device)
|
104 |
+
|
105 |
+
# Encode into CLIP vector
|
106 |
+
with torch.no_grad():
|
107 |
+
vec = model.encode_image(processed_image)
|
108 |
+
|
109 |
+
# Normalize vector
|
110 |
+
vec /= vec.norm(dim=-1, keepdim=True)
|
111 |
+
if debug: st.write(vec.shape)
|
112 |
+
vec = vec.numpy()
|
113 |
+
k = 40
|
114 |
+
for cat in ['walkability']:
|
115 |
+
st.write(cat, 'rating =', knn_get_score(knn, k, cat, vec))
|
116 |
+
|
117 |
+
except Exception as e:
|
118 |
+
st.error(f"Error processing image: {str(e)}")
|
119 |
+
|
120 |
+
if __name__ == "__main__":
|
121 |
+
main()
|