Spaces:
Running
Running
File size: 13,656 Bytes
379b837 6013c6d 379b837 6013c6d 379b837 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import pandas
import numpy
import pandas.io.formats.style
import random
import functools
from typing import Callable, Literal
DATA_FOLDER = "."
CAT_GENERAL = 0
CAT_ARTIST = 1
CAT_UNUSED = 2
CAT_COPYRIGHT = 3
CAT_CHARACTER = 4
CAT_SPECIES = 5
CAT_INVALID = 6
CAT_META = 7
CAT_LORE = 8
CATEGORY_COLORS = {
CAT_GENERAL: "#808080",
CAT_ARTIST: "#f2ac08",
CAT_UNUSED: "#ff3d3d",
CAT_COPYRIGHT: "#d0d",
CAT_CHARACTER: "#0a0",
CAT_SPECIES: "#ed5d1f",
CAT_INVALID: "#ff3d3d",
CAT_META: "#04f",
CAT_LORE: "#282"
}
def get_feather(filename: str) -> pandas.DataFrame:
return pandas.read_feather(f"{DATA_FOLDER}/{filename}.feather")
tags = get_feather("tags")
posts_by_tag = get_feather("posts_by_tag").set_index("tag_id")
tags_by_post = get_feather("tags_by_post").set_index("post_id")
tag_ratings = get_feather("tag_ratings")
implications = get_feather("implications")
tags_by_name = tags.copy(deep=True)
tags_by_name.set_index("name", inplace=True)
tags.set_index("tag_id", inplace=True)
@functools.cache
def get_related_tags(targets: tuple[str, ...], exclude: tuple[str, ...] = (), samples: int = 100_000) -> pandas.DataFrame:
these_tags = tags_by_name.loc[list(targets)]
posts_with_these_tags = posts_by_tag.loc[these_tags["tag_id"]].map(set).groupby(lambda x: True).agg(lambda x: set.intersection(*x))["post_id"][True]
if (len(exclude) > 0):
excluded_tags = tags_by_name.loc[list(exclude)]
posts_with_excluded_tags = posts_by_tag.loc[excluded_tags["tag_id"]].map(set).groupby(lambda x: True).agg(lambda x: set.union(*x))["post_id"][True]
posts_with_these_tags = posts_with_these_tags - posts_with_excluded_tags
total_post_count_together = len(posts_with_these_tags)
sample_posts = random.sample(list(posts_with_these_tags), samples) if total_post_count_together > samples else list(posts_with_these_tags)
post_count_together = len(sample_posts)
sample_ratio = post_count_together / total_post_count_together
tags_in_these_posts = tags_by_post.loc[sample_posts]
counts_in_these_posts = tags_in_these_posts["tag_id"].explode().value_counts().rename("overlap")
summaries = pandas.DataFrame(counts_in_these_posts).join(tags[tags["post_count"]>0], how="right").fillna(0)
summaries["overlap"] = numpy.minimum(summaries["overlap"] / sample_ratio, summaries["post_count"])
summaries = summaries[["category", "name", "overlap", "post_count"]]
# Old "interestingness" value, didn't give as good results as an actual statistical technique, go figure. Code kept for curiosity's sake.
#summaries["interestingness"] = summaries["overlap"].pow(2) / (total_post_count_together * summaries["post_count"])
# Phi coefficient stuff.
n = float(len(tags_by_post))
n11 = summaries["overlap"]
n1x = float(total_post_count_together)
nx1 = summaries["post_count"].astype("float64")
summaries["correlation"] = (n * n11 - n1x * nx1) / numpy.sqrt(n1x * nx1 * (n - n1x) * (n - nx1))
return summaries
def format_tags(styler: pandas.io.formats.style.Styler):
styler.apply(lambda row: numpy.where(row.index == "name", "color:"+CATEGORY_COLORS[row["category"]], ""), axis=1)
styler.hide(level=0)
styler.hide("category",axis=1)
if 'overlap' in styler.data:
styler.format("{:.0f}".format, subset=["overlap"])
if 'correlation' in styler.data:
styler.format("{:.2f}".format, subset=["correlation"])
styler.background_gradient(vmin=-1.0, vmax=1.0, cmap="RdYlGn", subset=["correlation"])
if 'score' in styler.data:
styler.format("{:.2f}".format, subset=["score"])
styler.background_gradient(vmin=-1.0, vmax=1.0, cmap="RdYlGn", subset=["score"])
return styler
def related_tags(*targets: str, exclude: tuple[str, ...] = (), category: int = None, samples: int = 100_000, min_overlap: int = 5, min_posts: int = 20, top: int = 30, bottom: int = 0) -> pandas.DataFrame:
result = get_related_tags(targets, exclude=exclude, samples=samples)
if category != None:
result = result[result["category"] == category]
result = result[~result["name"].isin(targets)]
result = result[result["overlap"] >= min_overlap]
result = result[result["post_count"] >= min_posts]
top_part = result.sort_values("correlation", ascending=False)[:top]
bottom_part = result.sort_values("correlation", ascending=True)[:bottom].sort_values("correlation", ascending=False)
return pandas.concat([top_part, bottom_part]).style.pipe(format_tags)
def implications_for(*subjects: str, seen: set[str] = None):
if seen is None:
seen = set()
for subject in subjects:
found = tags.loc[list(implications[implications["antecedent_id"] == tags_by_name.loc[subject, "tag_id"]].loc[:,"consequent_id"]), "name"].values
for f in found:
if f in seen:
pass
else:
yield f
seen.add(f)
yield from implications_for(f, seen=seen)
def parse_tag(potential_tag: str):
potential_tag = potential_tag.strip().replace(" ", "_").replace("\\(", "(").replace("\\)", ")")
if potential_tag == "":
return None
elif potential_tag in tags_by_name.index:
return potential_tag
elif potential_tag.startswith("by_") and potential_tag[3:] in tags_by_name.index:
return potential_tag[3:]
else:
print(f"Couldn't find tag '{potential_tag}', skipping it.")
def parse_tags(*parts: str):
for part in parts:
for potential_tag in part.split(","):
tag = parse_tag(potential_tag)
if tag is not None:
yield tag
def add_suggestions(suggestions: pandas.DataFrame, new_tags: str | list[str], multiplier: int, samples : int, min_posts: int, rating: Literal['s', 'q', 'e']):
if isinstance(new_tags, str):
new_tags = [new_tags]
for new_tag in new_tags:
related = get_related_tags((new_tag,), samples=samples)
# Implementing the rating filter this way is horribly inefficient, fix it later
if rating == 's':
related = related.join(tag_ratings.set_index("tag_id"), on="tag_id")
related["post_count"] = related["s"]
related = related.drop("s", axis=1)
related = related.drop("q", axis=1)
related = related.drop("e", axis=1)
elif rating == 'q':
related = related.join(tag_ratings.set_index("tag_id"), on="tag_id")
related["post_count"] = related["s"] + related["q"]
related = related.drop("s", axis=1)
related = related.drop("q", axis=1)
related = related.drop("e", axis=1)
related = related[related["post_count"] >= min_posts]
if suggestions is None:
suggestions = related.rename(columns={"correlation": "score"})
else:
suggestions = suggestions.join(related, rsuffix="r")
# This is a totally made up way to combine correlations. It keeps them from going outside the +/- 1 range, which is nice. It also makes older
# tags less important every time newer ones are added. That could be considered a feature or not.
suggestions["score"] = numpy.real(numpy.power((numpy.sqrt(suggestions["score"] + 0j) + numpy.sqrt(multiplier * suggestions["correlation"] + 0j)) / 2, 2))
return suggestions[["category", "name", "post_count", "score"]]
def pick_tags(suggestions: pandas.DataFrame, category: int, count: int, from_top: int, excluding: list[str], weighted: bool = True):
options = suggestions[(True if category is None else suggestions["category"] == category) & (suggestions["score"] > 0) & ~suggestions["name"].isin(excluding)].sort_values("score", ascending=False)[:from_top]
if weighted:
values = list(options["name"].values)
weights = list(options["score"].values)
choices = []
for _ in range(count):
choice = random.choices(population=values, weights=weights, k=1)[0]
weights.pop(values.index(choice))
values.remove(choice)
choices.append(choice)
return choices
else:
return random.sample(list(options["name"].values), count)
def tag_to_prompt(tag: str) -> str:
if (tags_by_name.loc[tag]["category"] == CAT_ARTIST):
tag = "by " + tag
return tag.replace("_", " ").replace("(" , "\\(").replace(")" , "\\)")
# A lambda in a for loop doesn't capture variables the way I want it to, so this is a method now
def add_suggestions_later(suggestions: pandas.DataFrame, new_tags: str | list[str], multiplier: int, samples: int, min_posts: int, rating: Literal['s', 'q', 'e']):
return lambda: add_suggestions(suggestions, new_tags, multiplier, samples, min_posts, rating)
Prompt = tuple[list[str], list[str], Callable[[], pandas.DataFrame]]
class PromptBuilder:
prompts: list[Prompt]
samples: int
min_posts: int
rating: Literal['s', 'q', 'e']
skip_list: list[str]
def __init__(self, prompts = [([],[],lambda: None)], skip=[], samples = 100_000, min_posts = 20, rating: Literal['s', 'q', 'e'] = 'e'):
self.prompts = prompts
self.samples = samples
self.min_posts = min_posts
self.rating = rating
self.skip_list = skip
def include(self, tag: str):
return PromptBuilder(prompts=[
(tag_list + [tag], negative_list, add_suggestions_later(suggestions(), tag, 1, self.samples, self.min_posts, self.rating))
for (tag_list, negative_list, suggestions) in self.prompts
], samples=self.samples, min_posts=self.min_posts, skip=self.skip_list, rating=self.rating)
def focus(self, tag: str):
return PromptBuilder(prompts=[
(tag_list, negative_list, add_suggestions_later(suggestions(), tag, 1, self.samples, self.min_posts, self.rating))
for (tag_list, negative_list, suggestions) in self.prompts
], samples=self.samples, min_posts=self.min_posts, skip=self.skip_list, rating=self.rating)
def exclude(self, tag: str):
return PromptBuilder(prompts=[
(tag_list, negative_list + [tag], add_suggestions_later(suggestions(), tag, -1, self.samples, self.min_posts, self.rating))
for (tag_list, negative_list, suggestions) in self.prompts
], samples=self.samples, min_posts=self.min_posts, skip=self.skip_list, rating=self.rating)
def avoid(self, tag: str):
return PromptBuilder(prompts=[
(tag_list, negative_list, add_suggestions_later(suggestions(), tag, -1, self.samples, self.min_posts, self.rating))
for (tag_list, negative_list, suggestions) in self.prompts
], samples=self.samples, min_posts=self.min_posts, skip=self.skip_list, rating=self.rating)
def pick(self, category: int, count: int, from_top: int):
new_prompts = self.prompts
for _ in range(count):
new_prompts = [
(tag_list + [tag], negative_list, add_suggestions_later(s, tag, 1, self.samples, self.min_posts, self.rating))
for (tag_list, negative_list, suggestions) in new_prompts
for s in (suggestions(),)
for tag in pick_tags(s, category, 1, from_top, tag_list + negative_list + self.skip_list)
]
return PromptBuilder(new_prompts, samples=self.samples, min_posts=self.min_posts, skip=self.skip_list, rating=self.rating)
def foreach_pick(self, category: int, count: int, from_top: int):
return PromptBuilder(prompts=[
(tag_list + [tag], negative_list, add_suggestions_later(s, tag, 1, self.samples, self.min_posts, self.rating))
for (tag_list, negative_list, suggestions) in self.prompts
for s in (suggestions(),)
for tag in pick_tags(s, category, count, from_top, tag_list + negative_list + self.skip_list)
], samples=self.samples, min_posts=self.min_posts, skip=self.skip_list, rating=self.rating)
def pick_fast(self, category: int, count: int, from_top: int):
prompts = []
for (tag_list, negative_list, suggestions) in self.prompts:
s = suggestions()
new_tags = pick_tags(s, category, count, from_top, tag_list + negative_list + self.skip_list)
prompts.append((tag_list + new_tags, negative_list, add_suggestions_later(s, new_tags, 1, self.samples, self.min_posts, self.rating)))
return PromptBuilder(prompts=prompts, samples=self.samples, min_posts=self.min_posts, skip=self.skip_list, rating=self.rating)
def branch(self, count: int):
return PromptBuilder(prompts=[prompt for prompt in self.prompts for _ in range(count)], samples=self.samples, min_posts=self.min_posts, skip=self.skip_list, rating=self.rating)
def build(self):
for (tag_list, negative_list, _) in self.prompts:
positive_prompt = ", ".join([ tag_to_prompt(tag) for tag in tag_list])
negative_prompt = ", ".join([ tag_to_prompt(tag) for tag in negative_list])
if negative_prompt:
yield f"{positive_prompt}\nNegative prompt: {negative_prompt}"
else:
yield positive_prompt
def print(self):
for prompt in self.build():
print(prompt)
def get_one(self):
for prompt in self.build():
return prompt
|