E_S_G_UPsingle / app.py
Spencer525's picture
Create app.py
05ac7fe verified
raw
history blame
7.4 kB
import streamlit as st
import pandas as pd
import plotly.graph_objects as go
import plotly.express as px
# Load data function
def load_data(uploaded_file):
if uploaded_file is not None:
df = pd.read_csv(uploaded_file)
df.fillna(0, inplace=True)
if '出表日期' in df.columns:
df['出表日期'] = df['出表日期'].astype(str)
if '公司代號' in df.columns:
df['公司代號'] = df['公司代號'].astype(str)
return df
else:
st.warning("請上傳檔案。")
return None
# Merge dataframes
def merge_dataframes(df1, df2, on_columns):
if df1 is None or df2 is None:
return None
for col in on_columns:
if col in df1.columns and col in df2.columns:
df1[col] = df1[col].astype(str)
df2[col] = df2[col].astype(str)
return pd.merge(df1, df2, on=on_columns, how="outer")
# Filter dataframe
def filter_dataframe(df, prefix):
return df[df['公司代號'].astype(str).str.startswith(prefix)]
# Get specific company data
def get_specific_company(df, company_code):
return df[df['公司代號'] == company_code]
# Plot radar chart
def plot_radar_chart(avg_values, specific_company_values, categories, prefix, specific_company_name):
fig = go.Figure()
fig.add_trace(go.Scatterpolar(
r=avg_values,
theta=categories,
fill='toself',
name=f"股號前兩位『{prefix}』的族群"
))
fig.add_trace(go.Scatterpolar(
r=specific_company_values,
theta=categories,
fill='toself',
name=f'{specific_company_name}'
))
fig.update_layout(
polar=dict(radialaxis=dict(visible=True, range=[0, 100])),
showlegend=True,
title="董事會和投資人溝通指標比較"
)
st.plotly_chart(fig)
# Plot emission chart
def plot_emission_chart(filtered_df, avg_emissions, prefix):
emission_columns = ['範疇一排放量(噸CO2e)', '範疇二排放量(噸CO2e)', '範疇三排放量(噸CO2e)']
fig = go.Figure()
for scope, color in zip(emission_columns, ['blue', 'green', 'red']):
fig.add_trace(go.Bar(
x=filtered_df['公司名稱'],
y=filtered_df[scope],
name=scope,
marker_color=color
))
fig.add_trace(go.Scatter(
x=filtered_df['公司名稱'],
y=[avg_emissions[scope]] * len(filtered_df),
mode='lines',
line=dict(color=color, dash='dash'),
name=f'{scope}平均值'
))
fig.update_layout(
title=f"代號前兩位『{prefix}』的族群 - 各範疇排放量",
barmode='group',
xaxis_title="公司名稱",
yaxis_title="排放量(噸CO2e)"
)
st.plotly_chart(fig)
# Plot energy usage
def plot_energy_usage(filtered_df, avg_energy_usage):
fig_energy = px.bar(filtered_df, x='公司名稱', y='使用率(再生能源/總能源)', title="再生能源使用率")
fig_energy.add_trace(go.Scatter(
x=filtered_df['公司名稱'],
y=[avg_energy_usage] * len(filtered_df),
mode='lines',
line=dict(color='red', dash='dash'),
name='群體平均值'
))
fig_energy.update_layout(
yaxis_title="再生能源使用率 (%)",
xaxis_title="公司名稱"
)
st.plotly_chart(fig_energy)
# Main function
def main():
st.title("公司數據分析儀表板")
# File upload
st.sidebar.header("上傳 CSV 檔案")
investor_file = st.sidebar.file_uploader("上傳 投資人溝通.csv", type=["csv"])
board_file = st.sidebar.file_uploader("上傳 董事會.csv", type=["csv"])
emission_file = st.sidebar.file_uploader("上傳 溫室氣體排放.csv", type=["csv"])
energy_file = st.sidebar.file_uploader("上傳 能源管理.csv", type=["csv"])
waste_file = st.sidebar.file_uploader("上傳 廢棄物管理.csv", type=["csv"])
# Load data
investor_df = load_data(investor_file)
board_df = load_data(board_file)
emission_df = load_data(emission_file)
energy_df = load_data(energy_file)
waste_df = load_data(waste_file)
# Merge data
merged_df1 = merge_dataframes(investor_df, board_df, ["公司代號", "公司名稱", "出表日期", "報告年度"])
merged_df2 = merge_dataframes(emission_df, energy_df, ["公司代號", "公司名稱", "出表日期", "報告年度"])
# User input
prefix = st.sidebar.text_input("輸入公司代號前兩位")
specific_company_code = st.sidebar.text_input("輸入四位數字公司代號")
# Handle 投資人溝通和董事會資料
if merged_df1 is not None and prefix and specific_company_code:
columns_of_interest = ['董事出席董事會出席率', '董事進修時數符合進修要點比率', '公司年度召開法說會次數(次)']
for col in ['董事出席董事會出席率', '董事進修時數符合進修要點比率']:
merged_df1[col] = merged_df1[col].replace({'%': ''}, regex=True).astype(float)
filtered_df1 = filter_dataframe(merged_df1, prefix)
avg_values = filtered_df1[columns_of_interest].mean()
specific_company_df1 = get_specific_company(merged_df1, specific_company_code)
if not specific_company_df1.empty:
specific_company_name = specific_company_df1['公司名稱'].iloc[0]
specific_company_values = specific_company_df1[columns_of_interest].iloc[0]
plot_radar_chart(avg_values, specific_company_values, ['董事出席率', '董事進修時數符合比率', '年度法說會次數'], prefix, specific_company_name)
else:
st.warning(f"找不到公司代號 {specific_company_code} 的資料")
# Handle 溫室氣體排放和能源管理資料
if merged_df2 is not None and prefix:
emission_columns = ['範疇一排放量(噸CO2e)', '範疇二排放量(噸CO2e)', '範疇三排放量(噸CO2e)']
energy_column = '使用率(再生能源/總能源)'
merged_df2[energy_column] = merged_df2[energy_column].replace({'%': ''}, regex=True).astype(float)
filtered_df2 = filter_dataframe(merged_df2, prefix)
specific_company_df2 = get_specific_company(merged_df2, specific_company_code)
if not filtered_df2.empty:
avg_emissions = filtered_df2[emission_columns].mean()
plot_emission_chart(filtered_df2, avg_emissions, prefix)
avg_energy_usage = filtered_df2[energy_column].mean()
plot_energy_usage(filtered_df2, avg_energy_usage)
if not specific_company_df2.empty:
specific_energy_usage = specific_company_df2[energy_column].iloc[0]
comparison_data = {
'公司名稱': [specific_company_df2['公司名稱'].iloc[0], f"{prefix} 母群體平均"],
'再生能源使用率 (%)': [specific_energy_usage, avg_energy_usage]
}
comparison_df = pd.DataFrame(comparison_data)
st.write("\n再生能源使用率比較表格:")
st.write(comparison_df)
else:
st.warning(f"找不到公司代號 {specific_company_code} 的能源管理數據")
else:
st.warning(f"找不到前兩碼為 {prefix} 的公司數據")
if __name__ == "__main__":
main()