Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,13 +4,12 @@ import numpy as np
|
|
4 |
import matplotlib.pyplot as plt
|
5 |
import seaborn as sns
|
6 |
from sklearn.model_selection import train_test_split
|
7 |
-
from sklearn.preprocessing import StandardScaler
|
8 |
from sklearn.tree import DecisionTreeClassifier
|
9 |
from sklearn.ensemble import RandomForestClassifier
|
10 |
from xgboost import XGBClassifier
|
11 |
from sklearn.inspection import permutation_importance
|
12 |
from sklearn.feature_selection import mutual_info_classif
|
13 |
-
from sklearn.preprocessing import LabelEncoder
|
14 |
import io
|
15 |
import base64
|
16 |
|
@@ -65,39 +64,10 @@ def calculate_feature_importance(X, y):
|
|
65 |
|
66 |
return importance_dict
|
67 |
|
68 |
-
# Example of usage in the main script
|
69 |
-
# After uploading the file and selecting the target column, run the analysis
|
70 |
-
if uploaded_file is not None:
|
71 |
-
data = pd.read_csv(uploaded_file)
|
72 |
-
st.write("Data Preview:")
|
73 |
-
st.write(data.head())
|
74 |
-
|
75 |
-
# Select target variable
|
76 |
-
target_col = st.selectbox("Select the target variable", data.columns)
|
77 |
-
|
78 |
-
if st.button('Analyze'):
|
79 |
-
X = data.drop(target_col, axis=1)
|
80 |
-
y = data[target_col]
|
81 |
-
|
82 |
-
# Ensure that `y` has continuous integer values for classification
|
83 |
-
st.write("Original Target Values:", y.unique()) # Show original target values for debugging
|
84 |
-
|
85 |
-
# Correlation Matrix
|
86 |
-
st.subheader('Correlation Matrix')
|
87 |
-
plot_correlation_matrix(data)
|
88 |
-
|
89 |
-
# Feature Importance
|
90 |
-
st.subheader('Feature Importance')
|
91 |
-
importance_dict = calculate_feature_importance(X, y)
|
92 |
-
|
93 |
-
# Create a DataFrame with all feature importances
|
94 |
-
importance_df = pd.DataFrame(importance_dict, index=X.columns)
|
95 |
-
st.write(importance_df)
|
96 |
-
|
97 |
# Streamlit app
|
98 |
st.title('Heart Disease Feature Analysis')
|
99 |
|
100 |
-
# File upload
|
101 |
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
|
102 |
|
103 |
if uploaded_file is not None:
|
@@ -112,16 +82,13 @@ if uploaded_file is not None:
|
|
112 |
X = data.drop(target_col, axis=1)
|
113 |
y = data[target_col]
|
114 |
|
|
|
|
|
|
|
115 |
# Correlation Matrix
|
116 |
st.subheader('Correlation Matrix')
|
117 |
plot_correlation_matrix(data)
|
118 |
|
119 |
-
# Download correlation matrix as PNG
|
120 |
-
buf = io.BytesIO()
|
121 |
-
plt.savefig(buf, format='png')
|
122 |
-
buf.seek(0)
|
123 |
-
st.markdown(get_download_link(buf.getvalue(), "correlation_matrix.png", "Download Correlation Matrix as PNG"), unsafe_allow_html=True)
|
124 |
-
|
125 |
# Feature Importance
|
126 |
st.subheader('Feature Importance')
|
127 |
importance_dict = calculate_feature_importance(X, y)
|
@@ -130,12 +97,5 @@ if uploaded_file is not None:
|
|
130 |
importance_df = pd.DataFrame(importance_dict, index=X.columns)
|
131 |
st.write(importance_df)
|
132 |
|
133 |
-
# Download feature importance as XLSX
|
134 |
-
excel_buffer = io.BytesIO()
|
135 |
-
with pd.ExcelWriter(excel_buffer, engine='xlsxwriter') as writer:
|
136 |
-
importance_df.to_excel(writer, sheet_name='Feature Importance')
|
137 |
-
excel_buffer.seek(0)
|
138 |
-
st.markdown(get_download_link(excel_buffer.getvalue(), "feature_importance.xlsx", "Download Feature Importance as XLSX"), unsafe_allow_html=True)
|
139 |
-
|
140 |
else:
|
141 |
st.write("Please upload a CSV file to begin the analysis.")
|
|
|
4 |
import matplotlib.pyplot as plt
|
5 |
import seaborn as sns
|
6 |
from sklearn.model_selection import train_test_split
|
7 |
+
from sklearn.preprocessing import StandardScaler, LabelEncoder
|
8 |
from sklearn.tree import DecisionTreeClassifier
|
9 |
from sklearn.ensemble import RandomForestClassifier
|
10 |
from xgboost import XGBClassifier
|
11 |
from sklearn.inspection import permutation_importance
|
12 |
from sklearn.feature_selection import mutual_info_classif
|
|
|
13 |
import io
|
14 |
import base64
|
15 |
|
|
|
64 |
|
65 |
return importance_dict
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
# Streamlit app
|
68 |
st.title('Heart Disease Feature Analysis')
|
69 |
|
70 |
+
# File upload (this line defines `uploaded_file`)
|
71 |
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
|
72 |
|
73 |
if uploaded_file is not None:
|
|
|
82 |
X = data.drop(target_col, axis=1)
|
83 |
y = data[target_col]
|
84 |
|
85 |
+
# Ensure that `y` has continuous integer values for classification
|
86 |
+
st.write("Original Target Values:", y.unique()) # Show original target values for debugging
|
87 |
+
|
88 |
# Correlation Matrix
|
89 |
st.subheader('Correlation Matrix')
|
90 |
plot_correlation_matrix(data)
|
91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
# Feature Importance
|
93 |
st.subheader('Feature Importance')
|
94 |
importance_dict = calculate_feature_importance(X, y)
|
|
|
97 |
importance_df = pd.DataFrame(importance_dict, index=X.columns)
|
98 |
st.write(importance_df)
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
else:
|
101 |
st.write("Please upload a CSV file to begin the analysis.")
|