Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,6 +10,7 @@ from sklearn.ensemble import RandomForestClassifier
|
|
10 |
from xgboost import XGBClassifier
|
11 |
from sklearn.inspection import permutation_importance
|
12 |
from sklearn.feature_selection import mutual_info_classif
|
|
|
13 |
import io
|
14 |
import base64
|
15 |
|
@@ -29,7 +30,13 @@ def plot_correlation_matrix(data):
|
|
29 |
|
30 |
# Function to calculate feature importance
|
31 |
def calculate_feature_importance(X, y):
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
scaler = StandardScaler()
|
34 |
X_train_scaled = scaler.fit_transform(X_train)
|
35 |
X_test_scaled = scaler.transform(X_test)
|
|
|
10 |
from xgboost import XGBClassifier
|
11 |
from sklearn.inspection import permutation_importance
|
12 |
from sklearn.feature_selection import mutual_info_classif
|
13 |
+
from sklearn.preprocessing import LabelEncoder
|
14 |
import io
|
15 |
import base64
|
16 |
|
|
|
30 |
|
31 |
# Function to calculate feature importance
|
32 |
def calculate_feature_importance(X, y):
|
33 |
+
# Convert non-sequential class labels to sequential integers
|
34 |
+
le = LabelEncoder()
|
35 |
+
y_encoded = le.fit_transform(y) # Transform y into continuous integers
|
36 |
+
|
37 |
+
# Split the dataset
|
38 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y_encoded, test_size=0.2, random_state=42)
|
39 |
+
|
40 |
scaler = StandardScaler()
|
41 |
X_train_scaled = scaler.fit_transform(X_train)
|
42 |
X_test_scaled = scaler.transform(X_test)
|