Spencer525 commited on
Commit
f6c413f
·
verified ·
1 Parent(s): be71f43

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -1
app.py CHANGED
@@ -10,6 +10,7 @@ from sklearn.ensemble import RandomForestClassifier
10
  from xgboost import XGBClassifier
11
  from sklearn.inspection import permutation_importance
12
  from sklearn.feature_selection import mutual_info_classif
 
13
  import io
14
  import base64
15
 
@@ -29,7 +30,13 @@ def plot_correlation_matrix(data):
29
 
30
  # Function to calculate feature importance
31
  def calculate_feature_importance(X, y):
32
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
 
 
 
 
 
 
33
  scaler = StandardScaler()
34
  X_train_scaled = scaler.fit_transform(X_train)
35
  X_test_scaled = scaler.transform(X_test)
 
10
  from xgboost import XGBClassifier
11
  from sklearn.inspection import permutation_importance
12
  from sklearn.feature_selection import mutual_info_classif
13
+ from sklearn.preprocessing import LabelEncoder
14
  import io
15
  import base64
16
 
 
30
 
31
  # Function to calculate feature importance
32
  def calculate_feature_importance(X, y):
33
+ # Convert non-sequential class labels to sequential integers
34
+ le = LabelEncoder()
35
+ y_encoded = le.fit_transform(y) # Transform y into continuous integers
36
+
37
+ # Split the dataset
38
+ X_train, X_test, y_train, y_test = train_test_split(X, y_encoded, test_size=0.2, random_state=42)
39
+
40
  scaler = StandardScaler()
41
  X_train_scaled = scaler.fit_transform(X_train)
42
  X_test_scaled = scaler.transform(X_test)