Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
from sklearn.cluster import KMeans, DBSCAN, AgglomerativeClustering | |
from sklearn.metrics import silhouette_score | |
from sklearn.preprocessing import StandardScaler | |
from statsmodels.tsa.arima.model import ARIMA | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
# Streamlit app title | |
st.title('Clustering and Time Series Analysis') | |
# Step 1: Upload CSV file | |
uploaded_file = st.file_uploader("Upload a CSV file", type=["csv"]) | |
if uploaded_file is not None: | |
data = pd.read_csv(uploaded_file) | |
st.write("Dataset Preview:", data.head()) | |
# Step 2: Data Preprocessing | |
# Selecting only numerical columns for clustering | |
numerical_cols = data.select_dtypes(include=[np.number]).columns.tolist() | |
st.write("Numerical columns for clustering:", numerical_cols) | |
# Option to scale data or not | |
scale_data = st.checkbox("Scale Data", value=True) | |
if scale_data: | |
scaler = StandardScaler() | |
data_scaled = scaler.fit_transform(data[numerical_cols]) | |
else: | |
data_scaled = data[numerical_cols].values | |
# Step 3: Clustering Algorithm Selection | |
clustering_method = st.selectbox("Choose a clustering method", ["K-Means", "Hierarchical Clustering", "DBSCAN"]) | |
if clustering_method == "K-Means": | |
k_range = st.slider("Select number of clusters for K-Means", min_value=2, max_value=7, value=3) | |
kmeans = KMeans(n_clusters=k_range, random_state=42) | |
cluster_labels = kmeans.fit_predict(data_scaled) | |
silhouette_avg = silhouette_score(data_scaled, cluster_labels) | |
st.write(f"K-Means Silhouette Score for {k_range} clusters: {silhouette_avg}") | |
elif clustering_method == "Hierarchical Clustering": | |
k_range = st.slider("Select number of clusters for Hierarchical Clustering", min_value=2, max_value=7, value=3) | |
hierarchical = AgglomerativeClustering(n_clusters=k_range) | |
cluster_labels = hierarchical.fit_predict(data_scaled) | |
silhouette_avg = silhouette_score(data_scaled, cluster_labels) | |
st.write(f"Hierarchical Clustering Silhouette Score for {k_range} clusters: {silhouette_avg}") | |
elif clustering_method == "DBSCAN": | |
eps_value = st.slider("Select eps value for DBSCAN", min_value=0.1, max_value=2.0, value=0.5) | |
min_samples_value = st.slider("Select minimum samples for DBSCAN", min_value=1, max_value=10, value=5) | |
dbscan = DBSCAN(eps=eps_value, min_samples=min_samples_value) | |
cluster_labels = dbscan.fit_predict(data_scaled) | |
# Check if DBSCAN found valid clusters | |
if len(set(cluster_labels)) > 1: | |
silhouette_avg = silhouette_score(data_scaled, cluster_labels) | |
st.write(f"DBSCAN Silhouette Score: {silhouette_avg}") | |
else: | |
st.write("DBSCAN did not form valid clusters. Try adjusting eps or min_samples.") | |
# Step 4: Visualize the clusters if valid | |
if len(set(cluster_labels)) > 1: | |
st.write("Cluster Labels:", np.unique(cluster_labels)) | |
sns.scatterplot(x=data_scaled[:, 0], y=data_scaled[:, 1], hue=cluster_labels, palette='Set1') | |
st.pyplot(plt) | |
# Step 5: ARIMA Time Series Analysis | |
# Checking if there are any time-related columns | |
time_series_col = None | |
for col in data.columns: | |
if pd.api.types.is_datetime64_any_dtype(data[col]): | |
time_series_col = col | |
break | |
if time_series_col: | |
st.write("Time Series Analysis (ARIMA) on column:", time_series_col) | |
time_series_data = data[time_series_col].dropna() | |
# ARIMA model order | |
p = st.number_input("ARIMA p value", min_value=0, max_value=5, value=1) | |
d = st.number_input("ARIMA d value", min_value=0, max_value=2, value=1) | |
q = st.number_input("ARIMA q value", min_value=0, max_value=5, value=1) | |
arima_model = ARIMA(time_series_data, order=(p, d, q)) | |
arima_result = arima_model.fit() | |
# Display ARIMA result summary | |
st.write(arima_result.summary()) | |
# Plotting the original and forecast | |
fig, ax = plt.subplots() | |
arima_result.plot_predict(dynamic=False, ax=ax) | |
st.pyplot(fig) | |
# Step 6: Create Silhouette Score Table for K-Means and Hierarchical Clustering | |
st.write("### Silhouette Score Table for 2-7 Clusters") | |
silhouette_scores = {'Number of Clusters': [], 'K-Means Silhouette Score': [], 'Hierarchical Silhouette Score': []} | |
for n_clusters in range(2, 8): | |
# K-Means | |
kmeans = KMeans(n_clusters=n_clusters, random_state=42) | |
kmeans_labels = kmeans.fit_predict(data_scaled) | |
kmeans_silhouette = silhouette_score(data_scaled, kmeans_labels) | |
# Hierarchical | |
hierarchical = AgglomerativeClustering(n_clusters=n_clusters) | |
hierarchical_labels = hierarchical.fit_predict(data_scaled) | |
hierarchical_silhouette = silhouette_score(data_scaled, hierarchical_labels) | |
silhouette_scores['Number of Clusters'].append(n_clusters) | |
silhouette_scores['K-Means Silhouette Score'].append(kmeans_silhouette) | |
silhouette_scores['Hierarchical Silhouette Score'].append(hierarchical_silhouette) | |
silhouette_df = pd.DataFrame(silhouette_scores) | |
st.write(silhouette_df) | |