Spaces:
Sleeping
Sleeping
File size: 1,790 Bytes
1b2a38a 2960eb4 7e978bb 0189af7 094584b 0189af7 1b2a38a 2960eb4 1b2a38a 2960eb4 1b2a38a 2960eb4 1b2a38a 2960eb4 1b2a38a 2960eb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, login
import torch
HF_TOKEN = os.getenv("HF_TOKEN")
login(token=HF_TOKEN)
model_name = "Spestly/Atlas-Pro-1.5B-Preview"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float32, low_cpu_mem_usage=True)
model.eval()
def generate_response(message, history):
instruction = (
"You are an LLM called Atlas. You are finetuned by Aayan Mishra. You are NOT trained by Anthropic. "
"You are a Qwen 2.5 fine-tune. Your purpose is the help the user accomplish their request to the best of your abilities. "
"Below is an instruction that describes a task. Answer it clearly and concisely.\n\n"
f"### Instruction:\n{message}\n\n### Response:"
)
inputs = tokenizer(instruction, return_tensors="pt")
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=1000,
num_return_sequences=1,
temperature=0.7,
top_p=0.9,
do_sample=True
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
response = response.split("### Response:")[-1].strip()
return response
iface = gr.ChatInterface(
generate_response,
chatbot=gr.Chatbot(height=600, type="messages"),
textbox=gr.Textbox(placeholder="Type your message here...", container=False, scale=7),
title="π¦ Atlas-Pro",
description="Chat with Alas-Pro",
theme="citrus",
examples=[
"Can you give me a good salsa recipe?",
"Write an engaging two-line horror story.",
"What is the capital of Australia?",
],
type="messages"
)
iface.launch() |