Spaces:
Sleeping
Sleeping
File size: 8,997 Bytes
7e978bb 0189af7 7e978bb 7c8d3e4 7e978bb 8653d1f 0189af7 094584b 0189af7 8653d1f 7e978bb 199fbdd 7e978bb 7c8d3e4 7e978bb 8653d1f b1e24d2 7e978bb 8653d1f 7e978bb 8653d1f 7e978bb 8653d1f 7e978bb 7c8d3e4 7e978bb 8653d1f 9ec19a0 7e978bb 8653d1f 2b609ab 7c8d3e4 7e978bb 2b609ab 7e978bb 2b609ab 7c8d3e4 8653d1f 7e978bb 8653d1f 7e978bb b1e24d2 7e978bb 7c8d3e4 7e978bb 8653d1f 7e978bb 7c8d3e4 b1e24d2 7e978bb 7c8d3e4 7e978bb b1e24d2 7e978bb 7c8d3e4 7e978bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import gc
import torch
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM
from huggingface_hub import login
import re
import os
from PIL import Image
# Load Hugging Face token
HF_TOKEN = os.getenv("HF_TOKEN")
login(token=HF_TOKEN)
# Define models
MODELS = {
"athena-1": {
"name": "π¦ Atlas-Flash",
"sizes": {
"1.5B": "Spestly/Atlas-R1-1.5B-Preview",
},
"emoji": "π¦",
"experimental": True,
"is_vision": False, # Enable vision support for this model
},
}
# Profile pictures
USER_PFP = "user.png" # Hugging Face user avatar
AI_PFP = "ai_pfp.png" # Replace with the path to your AI's image or a URL
class AtlasInferenceApp:
def __init__(self):
if "current_model" not in st.session_state:
st.session_state.current_model = {"tokenizer": None, "model": None, "config": None}
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
st.set_page_config(
page_title="Atlas Model Inference",
page_icon="π¦ ",
layout="wide",
menu_items={
'Get Help': 'https://huggingface.co/collections/Spestly/athena-1-67623e58bfaadd3c2fcffb86',
'Report a bug': 'https://huggingface.co/Spestly/Athena-1-1.5B/discussions/new',
'About': 'Athena Model Inference Platform'
}
)
def clear_memory(self):
"""Optimize memory management for CPU inference"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
def load_model(self, model_key, model_size):
try:
self.clear_memory()
if st.session_state.current_model["model"] is not None:
del st.session_state.current_model["model"]
del st.session_state.current_model["tokenizer"]
self.clear_memory()
model_path = MODELS[model_key]["sizes"][model_size]
# Load Qwen-compatible tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto", # Use GPU if available
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
trust_remote_code=True,
low_cpu_mem_usage=True
)
# Update session state
st.session_state.current_model.update({
"tokenizer": tokenizer,
"model": model,
"config": {
"name": f"{MODELS[model_key]['name']} {model_size}",
"path": model_path,
}
})
return f"β
{MODELS[model_key]['name']} {model_size} loaded successfully!"
except Exception as e:
return f"β Error: {str(e)}"
def respond(self, message, max_tokens, temperature, top_p, top_k, image=None):
if not st.session_state.current_model["model"]:
return "β οΈ Please select and load a model first"
try:
# Add a system instruction to guide the model's behavior
system_instruction = "You are Atlas, a helpful AI assistant trained to help the user. You are a Deepseek R1 fine-tune."
prompt = f"{system_instruction}\n\n### Instruction:\n{message}\n\n### Response:"
inputs = st.session_state.current_model["tokenizer"](
prompt,
return_tensors="pt",
max_length=512,
truncation=True,
padding=True
)
# Generate response with streaming
response_container = st.empty() # Placeholder for streaming text
full_response = ""
generated_tokens = [] # Track generated tokens to avoid duplicates
with torch.no_grad():
for chunk in st.session_state.current_model["model"].generate(
input_ids=inputs.input_ids,
attention_mask=inputs.attention_mask,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
top_k=top_k,
do_sample=True,
pad_token_id=st.session_state.current_model["tokenizer"].pad_token_id,
eos_token_id=st.session_state.current_model["tokenizer"].eos_token_id,
):
# Decode only the new tokens
new_tokens = chunk[:, inputs.input_ids.shape[1]:] # Exclude input tokens
generated_tokens.extend(new_tokens[0].tolist()) # Add new tokens to the list
chunk_text = st.session_state.current_model["tokenizer"].decode(generated_tokens, skip_special_tokens=True)
# Remove the prompt from the response
if prompt in chunk_text:
chunk_text = chunk_text.replace(prompt, "").strip()
# Update the response
full_response = chunk_text
response_container.markdown(full_response)
# Stop if the response is too long or incomplete
if len(full_response) >= max_tokens * 4: # Approximate token-to-character ratio
st.warning("β οΈ Response truncated due to length limit.")
break
return full_response.strip() # Return the cleaned response
except Exception as e:
return f"β οΈ Generation Error: {str(e)}"
finally:
self.clear_memory()
def main(self):
st.title("π¦ AtlasUI - Experimental π§ͺ")
with st.sidebar:
st.header("π Model Selection")
model_key = st.selectbox(
"Choose Atlas Variant",
list(MODELS.keys()),
format_func=lambda x: f"{MODELS[x]['name']} {'π§ͺ' if MODELS[x]['experimental'] else ''}"
)
model_size = st.selectbox(
"Choose Model Size",
list(MODELS[model_key]["sizes"].keys())
)
if st.button("Load Model"):
with st.spinner("Loading model... This may take a few minutes."):
status = self.load_model(model_key, model_size)
st.success(status)
st.header("π§ Generation Parameters")
max_tokens = st.slider("Max New Tokens", min_value=10, max_value=512, value=256, step=10)
temperature = st.slider("Temperature", min_value=0.1, max_value=2.0, value=0.4, step=0.1)
top_p = st.slider("Top-P", min_value=0.1, max_value=1.0, value=0.9, step=0.1)
top_k = st.slider("Top-K", min_value=1, max_value=100, value=50, step=1)
if st.button("Clear Chat History"):
st.session_state.chat_history = []
st.rerun()
st.markdown("*β οΈ CAUTION: Atlas is an experimental model and this is just a preview. Responses may not be expected. Please double-check sensitive information!*")
# Display chat history
for message in st.session_state.chat_history:
with st.chat_message(
message["role"],
avatar=USER_PFP if message["role"] == "user" else AI_PFP
):
st.markdown(message["content"])
if "image" in message:
st.image(message["image"], caption="Uploaded Image", use_column_width=True)
# Input box for user messages
if prompt := st.chat_input("Message Atlas..."):
# Allow image upload if the model supports vision
uploaded_image = None
if MODELS[model_key]["is_vision"]:
uploaded_image = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
st.session_state.chat_history.append({"role": "user", "content": prompt, "image": uploaded_image})
with st.chat_message("user", avatar=USER_PFP):
st.markdown(prompt)
if uploaded_image:
st.image(uploaded_image, caption="Uploaded Image", use_column_width=True)
with st.chat_message("assistant", avatar=AI_PFP):
with st.spinner("Generating response..."):
response = self.respond(prompt, max_tokens, temperature, top_p, top_k, image=uploaded_image)
st.markdown(response)
st.session_state.chat_history.append({"role": "assistant", "content": response})
def run():
try:
app = AtlasInferenceApp()
app.main()
except Exception as e:
st.error(f"β οΈ Application Error: {str(e)}")
if __name__ == "__main__":
run() |