File size: 2,960 Bytes
5953ef9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import gradio as gr
from rex.utils.initialization import set_seed_and_log_path
from rex.utils.logging import logger

from src.task import MrcQaTask, SchemaGuidedInstructBertTask

set_seed_and_log_path(log_path="app.log")


class MrcQaPipeline:
    def __init__(self, task_dir: str, load_path: str = None) -> None:
        self.task = MrcQaTask.from_taskdir(
            task_dir, load_best_model=load_path is None, initialize=False
        )
        if load_path:
            self.task.load(load_path, load_history=False)

    def predict(self, query, context, background=None):
        data = [
            {
                "query": query,
                "context": context,
                "background": background,
            }
        ]
        results = self.task.predict(data)
        ret = results[0]

        data[0]["pred"] = ret
        logger.opt(colors=False).debug(data[0])

        return ret


class InstructBertPipeline:
    def __init__(self, task_dir: str, load_path: str = None) -> None:
        self.task = SchemaGuidedInstructBertTask.from_taskdir(
            task_dir, load_best_model=load_path is None, initialize=False
        )
        if load_path:
            self.task.load(load_path, load_history=False)

    def predict(self, instruction, schema, text, background):
        data = [
            {
                "query": query,
                "context": context,
                "background": background,
            }
        ]
        results = self.task.predict(data)
        ret = results[0]

        data[0]["pred"] = ret
        logger.opt(colors=False).debug(data[0])

        return ret


def mrc_qa():
    pipe = Pipeline("outputs/RobertaBase_data20230314v2")

    with gr.Blocks() as demo:
        gr.Markdown("# 🪞 Mirror Mirror")

        with gr.Row():
            with gr.Column():
                with gr.Row():
                    query = gr.Textbox(
                        label="Query", placeholder="Mirror Mirror, tell me ..."
                    )
                with gr.Row():
                    context = gr.TextArea(
                        label="Candidates",
                        placeholder="Separated by comma (,) without spaces.",
                    )
                with gr.Row():
                    background = gr.TextArea(
                        label="Background",
                        placeholder="Background explanation, could be empty",
                    )

            with gr.Column():
                with gr.Row():
                    trigger_button = gr.Button("Tell me the truth", variant="primary")
                with gr.Row():
                    output = gr.TextArea(label="Output")

                trigger_button.click(
                    pipe.predict, inputs=[query, context, background], outputs=output
                )

    demo.launch(show_error=True, share=False)


def instruct_bert_pipeline():
    task = SchemaGuidedInstructBertTask.from_taskdir()