Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from transformers import AutoModelForCausalLM, Trainer, TrainingArguments | |
from datasets import load_dataset | |
import os | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
def train_model(hf_token_value): | |
os.environ["HUGGINGFACE_TOKEN"] = hf_token_value | |
# Load dataset | |
dataset = load_dataset('json', data_files={ | |
'train': 'training_set.json'}) | |
# Load model | |
model = AutoModelForCausalLM.from_pretrained( | |
'meta-llama/Meta-Llama-3-8B-Instruct') | |
# Define training arguments | |
training_args = TrainingArguments( | |
output_dir='./results', | |
num_train_epochs=3, | |
per_device_train_batch_size=16, | |
save_steps=10_000, | |
save_total_limit=2, | |
) | |
# Initialize Trainer | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=dataset['train'], | |
eval_dataset=dataset['test'] | |
) | |
# Start training | |
trainer.train() | |
return "Training complete" | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.Blocks() | |
with demo: | |
gr.Markdown("# Llama3training Chatbot and Model Trainer") | |
with gr.Tab("Chat"): | |
gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", | |
label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, | |
step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, | |
step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
with gr.Tab("Train"): | |
hf_token = gr.Textbox(label="Hugging Face Token", type="password") | |
train_button = gr.Button("Start Training") | |
train_output = gr.Textbox(label="Training Output") | |
train_button.click(train_model, inputs=hf_token, outputs=train_output) | |
if __name__ == "__main__": | |
demo.launch() | |