Spaces:
Sleeping
Sleeping
SpicyMelonYT
commited on
Commit
·
19f8b29
1
Parent(s):
6e17d5a
added training set and path in code
Browse files- app.py +11 -4
- training_set.json +42 -0
app.py
CHANGED
@@ -8,6 +8,7 @@ For more information on `huggingface_hub` Inference API support, please check th
|
|
8 |
"""
|
9 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
10 |
|
|
|
11 |
def respond(
|
12 |
message,
|
13 |
history: list[tuple[str, str]],
|
@@ -40,9 +41,11 @@ def respond(
|
|
40 |
response += token
|
41 |
yield response
|
42 |
|
|
|
43 |
def train_model():
|
44 |
# Load dataset
|
45 |
-
dataset = load_dataset('
|
|
|
46 |
|
47 |
# Load model
|
48 |
model = AutoModelForCausalLM.from_pretrained('meta-llama/Meta-Llama-3-8B')
|
@@ -68,6 +71,7 @@ def train_model():
|
|
68 |
trainer.train()
|
69 |
return "Training complete"
|
70 |
|
|
|
71 |
"""
|
72 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
73 |
"""
|
@@ -79,9 +83,12 @@ with demo:
|
|
79 |
gr.ChatInterface(
|
80 |
respond,
|
81 |
additional_inputs=[
|
82 |
-
gr.Textbox(value="You are a friendly Chatbot.",
|
83 |
-
|
84 |
-
gr.Slider(minimum=
|
|
|
|
|
|
|
85 |
gr.Slider(
|
86 |
minimum=0.1,
|
87 |
maximum=1.0,
|
|
|
8 |
"""
|
9 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
10 |
|
11 |
+
|
12 |
def respond(
|
13 |
message,
|
14 |
history: list[tuple[str, str]],
|
|
|
41 |
response += token
|
42 |
yield response
|
43 |
|
44 |
+
|
45 |
def train_model():
|
46 |
# Load dataset
|
47 |
+
dataset = load_dataset('json', data_files={
|
48 |
+
'train': 'path/to/training_set.json'})
|
49 |
|
50 |
# Load model
|
51 |
model = AutoModelForCausalLM.from_pretrained('meta-llama/Meta-Llama-3-8B')
|
|
|
71 |
trainer.train()
|
72 |
return "Training complete"
|
73 |
|
74 |
+
|
75 |
"""
|
76 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
77 |
"""
|
|
|
83 |
gr.ChatInterface(
|
84 |
respond,
|
85 |
additional_inputs=[
|
86 |
+
gr.Textbox(value="You are a friendly Chatbot.",
|
87 |
+
label="System message"),
|
88 |
+
gr.Slider(minimum=1, maximum=2048, value=512,
|
89 |
+
step=1, label="Max new tokens"),
|
90 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7,
|
91 |
+
step=0.1, label="Temperature"),
|
92 |
gr.Slider(
|
93 |
minimum=0.1,
|
94 |
maximum=1.0,
|
training_set.json
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"train": [
|
3 |
+
{
|
4 |
+
"messages": [
|
5 |
+
{ "role": "system", "content": "You are a helpful assistant." },
|
6 |
+
{ "role": "user", "content": "How do I train a Llama 3 model?" },
|
7 |
+
{
|
8 |
+
"role": "assistant",
|
9 |
+
"content": "To train a Llama 3 model, you need to load the dataset, define training arguments, initialize the Trainer, and start the training process. Make sure to use appropriate libraries such as Hugging Face Transformers and datasets."
|
10 |
+
}
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"messages": [
|
15 |
+
{ "role": "system", "content": "You are a helpful assistant." },
|
16 |
+
{
|
17 |
+
"role": "user",
|
18 |
+
"content": "Can you generate text using the Llama 3 model?"
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"role": "assistant",
|
22 |
+
"content": "Yes, you can generate text using the Llama 3 model by tokenizing your input text, feeding it to the model, and decoding the output. The Hugging Face Transformers library provides tools to facilitate this process."
|
23 |
+
}
|
24 |
+
]
|
25 |
+
}
|
26 |
+
],
|
27 |
+
"test": [
|
28 |
+
{
|
29 |
+
"messages": [
|
30 |
+
{ "role": "system", "content": "You are a helpful assistant." },
|
31 |
+
{
|
32 |
+
"role": "user",
|
33 |
+
"content": "What are the main features of the Llama 3 model?"
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"role": "assistant",
|
37 |
+
"content": "The main features of the Llama 3 model include its ability to generate coherent and contextually relevant responses in conversational settings, support for large-scale language understanding tasks, and compatibility with various fine-tuning and deployment tools provided by the Hugging Face ecosystem."
|
38 |
+
}
|
39 |
+
]
|
40 |
+
}
|
41 |
+
]
|
42 |
+
}
|