Spaces:
Sleeping
Sleeping
SpicyMelonYT
commited on
Commit
·
f934c1a
1
Parent(s):
9ad7da7
another app fix
Browse files
app.py
CHANGED
@@ -2,12 +2,11 @@ import gradio as gr
|
|
2 |
from huggingface_hub import InferenceClient
|
3 |
from transformers import AutoModelForCausalLM, Trainer, TrainingArguments
|
4 |
from datasets import load_dataset
|
5 |
-
import os
|
6 |
|
7 |
"""
|
8 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
9 |
"""
|
10 |
-
client = InferenceClient("
|
11 |
|
12 |
|
13 |
def respond(
|
@@ -43,16 +42,16 @@ def respond(
|
|
43 |
yield response
|
44 |
|
45 |
|
46 |
-
def train_model(
|
47 |
-
|
48 |
os.environ["HUGGINGFACE_TOKEN"] = hf_token
|
49 |
|
50 |
# Load dataset
|
51 |
-
dataset = load_dataset('json', data_files=
|
|
|
52 |
|
53 |
# Load model
|
54 |
-
model = AutoModelForCausalLM.from_pretrained(
|
55 |
-
'meta-llama/Meta-Llama-3-8B-Instruct', use_auth_token=hf_token)
|
56 |
|
57 |
# Define training arguments
|
58 |
training_args = TrainingArguments(
|
@@ -68,8 +67,7 @@ def train_model(hf_token):
|
|
68 |
model=model,
|
69 |
args=training_args,
|
70 |
train_dataset=dataset['train'],
|
71 |
-
|
72 |
-
eval_dataset=dataset['train']
|
73 |
)
|
74 |
|
75 |
# Start training
|
@@ -94,8 +92,13 @@ with demo:
|
|
94 |
step=1, label="Max new tokens"),
|
95 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7,
|
96 |
step=0.1, label="Temperature"),
|
97 |
-
gr.Slider(
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
99 |
],
|
100 |
)
|
101 |
with gr.Tab("Train"):
|
@@ -103,8 +106,7 @@ with demo:
|
|
103 |
train_button = gr.Button("Start Training")
|
104 |
train_output = gr.Textbox(label="Training Output")
|
105 |
|
106 |
-
train_button.click(
|
107 |
-
outputs=train_output)
|
108 |
|
109 |
if __name__ == "__main__":
|
110 |
demo.launch()
|
|
|
2 |
from huggingface_hub import InferenceClient
|
3 |
from transformers import AutoModelForCausalLM, Trainer, TrainingArguments
|
4 |
from datasets import load_dataset
|
|
|
5 |
|
6 |
"""
|
7 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
8 |
"""
|
9 |
+
client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
|
10 |
|
11 |
|
12 |
def respond(
|
|
|
42 |
yield response
|
43 |
|
44 |
|
45 |
+
def train_model():
|
46 |
+
|
47 |
os.environ["HUGGINGFACE_TOKEN"] = hf_token
|
48 |
|
49 |
# Load dataset
|
50 |
+
dataset = load_dataset('json', data_files={
|
51 |
+
'train': 'training_set.json'})
|
52 |
|
53 |
# Load model
|
54 |
+
model = AutoModelForCausalLM.from_pretrained('meta-llama/Meta-Llama-3-8B-Instruct')
|
|
|
55 |
|
56 |
# Define training arguments
|
57 |
training_args = TrainingArguments(
|
|
|
67 |
model=model,
|
68 |
args=training_args,
|
69 |
train_dataset=dataset['train'],
|
70 |
+
eval_dataset=dataset['test']
|
|
|
71 |
)
|
72 |
|
73 |
# Start training
|
|
|
92 |
step=1, label="Max new tokens"),
|
93 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7,
|
94 |
step=0.1, label="Temperature"),
|
95 |
+
gr.Slider(
|
96 |
+
minimum=0.1,
|
97 |
+
maximum=1.0,
|
98 |
+
value=0.95,
|
99 |
+
step=0.05,
|
100 |
+
label="Top-p (nucleus sampling)",
|
101 |
+
),
|
102 |
],
|
103 |
)
|
104 |
with gr.Tab("Train"):
|
|
|
106 |
train_button = gr.Button("Start Training")
|
107 |
train_output = gr.Textbox(label="Training Output")
|
108 |
|
109 |
+
train_button.click(train_model, outputs=train_output)
|
|
|
110 |
|
111 |
if __name__ == "__main__":
|
112 |
demo.launch()
|