import gradio as gr from huggingface_hub import InferenceClient from transformers import AutoModelForCausalLM, Trainer, TrainingArguments from datasets import load_dataset import os """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response def train_model(hf_token_value): os.environ["HUGGINGFACE_TOKEN"] = hf_token_value # Load dataset dataset = load_dataset('json', data_files={ 'train': 'training_set.json'}) # Load model model = AutoModelForCausalLM.from_pretrained( 'meta-llama/Meta-Llama-3-8B-Instruct') # Define training arguments training_args = TrainingArguments( output_dir='./results', num_train_epochs=3, per_device_train_batch_size=16, save_steps=10_000, save_total_limit=2, ) # Initialize Trainer trainer = Trainer( model=model, args=training_args, train_dataset=dataset['train'], eval_dataset=dataset['test'] ) # Start training trainer.train() return "Training complete" """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.Blocks() with demo: gr.Markdown("# Llama3training Chatbot and Model Trainer") with gr.Tab("Chat"): gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) with gr.Tab("Train"): hf_token = gr.Textbox(label="Hugging Face Token", type="password") train_button = gr.Button("Start Training") train_output = gr.Textbox(label="Training Output") train_button.click(train_model, inputs=hf_token, outputs=train_output) if __name__ == "__main__": demo.launch()