Spaces:
Runtime error
Runtime error
chumpblocckami
commited on
Commit
·
1b878d8
1
Parent(s):
b596e88
feat: add application file
Browse files- README.md +1 -1
- app.py +53 -0
- requirements.txt +3 -0
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
title: Companies NER
|
3 |
-
emoji:
|
4 |
colorFrom: gray
|
5 |
colorTo: indigo
|
6 |
sdk: streamlit
|
|
|
1 |
---
|
2 |
title: Companies NER
|
3 |
+
emoji: 💻
|
4 |
colorFrom: gray
|
5 |
colorTo: indigo
|
6 |
sdk: streamlit
|
app.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from annotated_text import annotated_text
|
3 |
+
import transformers
|
4 |
+
|
5 |
+
ENTITY_TO_COLOR = {
|
6 |
+
'PER': '#8ef',
|
7 |
+
'LOC': '#faa',
|
8 |
+
'ORG': '#afa',
|
9 |
+
'MISC': '#fea',
|
10 |
+
}
|
11 |
+
|
12 |
+
@st.cache(allow_output_mutation=True, show_spinner=False)
|
13 |
+
def get_pipe():
|
14 |
+
model_name = "dslim/bert-base-NER"
|
15 |
+
model = transformers.AutoModelForTokenClassification.from_pretrained(model_name)
|
16 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
|
17 |
+
pipe = transformers.pipeline("token-classification", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
|
18 |
+
return pipe
|
19 |
+
|
20 |
+
def parse_text(text, prediction):
|
21 |
+
start = 0
|
22 |
+
parsed_text = []
|
23 |
+
for p in prediction:
|
24 |
+
parsed_text.append(text[start:p["start"]])
|
25 |
+
parsed_text.append((p["word"], p["entity_group"], ENTITY_TO_COLOR[p["entity_group"]]))
|
26 |
+
start = p["end"]
|
27 |
+
parsed_text.append(text[start:])
|
28 |
+
return parsed_text
|
29 |
+
|
30 |
+
st.set_page_config(page_title="Named Entity Recognition")
|
31 |
+
st.title("Named Entity Recognition")
|
32 |
+
st.write("Type text into the text box and then press 'Predict' to get the named entities.")
|
33 |
+
|
34 |
+
default_text = "My name is John Smith. I work at Microsoft. I live in Paris. My favorite painting is the Mona Lisa."
|
35 |
+
|
36 |
+
text = st.text_area('Enter text here:', value=default_text)
|
37 |
+
submit = st.button('Predict')
|
38 |
+
|
39 |
+
with st.spinner("Loading model..."):
|
40 |
+
pipe = get_pipe()
|
41 |
+
|
42 |
+
if (submit and len(text.strip()) > 0) or len(text.strip()) > 0:
|
43 |
+
|
44 |
+
prediction = pipe(text)
|
45 |
+
|
46 |
+
parsed_text = parse_text(text, prediction)
|
47 |
+
|
48 |
+
st.header("Prediction:")
|
49 |
+
annotated_text(*parsed_text)
|
50 |
+
|
51 |
+
st.header('Raw values:')
|
52 |
+
st.json(prediction)
|
53 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
torch
|
3 |
+
st-annotated-text
|