Spaces:
Runtime error
Runtime error
chumpblocckami
commited on
Commit
·
b51cc8c
1
Parent(s):
a986644
feat: added models choice
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import streamlit as st
|
2 |
-
from annotated_text import annotated_text
|
3 |
import transformers
|
|
|
4 |
|
5 |
ENTITY_TO_COLOR = {
|
6 |
'PER': '#8ef',
|
@@ -9,14 +9,18 @@ ENTITY_TO_COLOR = {
|
|
9 |
'MISC': '#fea',
|
10 |
}
|
11 |
|
|
|
12 |
@st.cache(allow_output_mutation=True, show_spinner=False)
|
13 |
-
def get_pipe():
|
14 |
-
model_name = "dslim/bert-base-NER"
|
15 |
model = transformers.AutoModelForTokenClassification.from_pretrained(model_name)
|
16 |
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
|
17 |
-
pipe = transformers.pipeline("token-classification",
|
|
|
|
|
|
|
18 |
return pipe
|
19 |
|
|
|
20 |
def parse_text(text, prediction):
|
21 |
start = 0
|
22 |
parsed_text = []
|
@@ -27,24 +31,25 @@ def parse_text(text, prediction):
|
|
27 |
parsed_text.append(text[start:])
|
28 |
return parsed_text
|
29 |
|
|
|
30 |
st.set_page_config(page_title="Named Entity Recognition")
|
31 |
st.title("Named Entity Recognition")
|
32 |
st.write("Type text into the text box and then press 'Predict' to get the named entities.")
|
33 |
|
34 |
-
|
|
|
35 |
|
|
|
36 |
text = st.text_area('Enter text here:', value=default_text)
|
37 |
submit = st.button('Predict')
|
38 |
|
39 |
with st.spinner("Loading model..."):
|
40 |
-
pipe = get_pipe()
|
41 |
|
42 |
if (submit and len(text.strip()) > 0) or len(text.strip()) > 0:
|
43 |
-
|
44 |
prediction = pipe(text)
|
45 |
|
46 |
parsed_text = parse_text(text, prediction)
|
47 |
|
48 |
st.header("Prediction:")
|
49 |
annotated_text(*parsed_text)
|
50 |
-
|
|
|
1 |
import streamlit as st
|
|
|
2 |
import transformers
|
3 |
+
from annotated_text import annotated_text
|
4 |
|
5 |
ENTITY_TO_COLOR = {
|
6 |
'PER': '#8ef',
|
|
|
9 |
'MISC': '#fea',
|
10 |
}
|
11 |
|
12 |
+
|
13 |
@st.cache(allow_output_mutation=True, show_spinner=False)
|
14 |
+
def get_pipe(model_name):
|
|
|
15 |
model = transformers.AutoModelForTokenClassification.from_pretrained(model_name)
|
16 |
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
|
17 |
+
pipe = transformers.pipeline("token-classification",
|
18 |
+
model=model,
|
19 |
+
tokenizer=tokenizer,
|
20 |
+
aggregation_strategy="simple")
|
21 |
return pipe
|
22 |
|
23 |
+
|
24 |
def parse_text(text, prediction):
|
25 |
start = 0
|
26 |
parsed_text = []
|
|
|
31 |
parsed_text.append(text[start:])
|
32 |
return parsed_text
|
33 |
|
34 |
+
|
35 |
st.set_page_config(page_title="Named Entity Recognition")
|
36 |
st.title("Named Entity Recognition")
|
37 |
st.write("Type text into the text box and then press 'Predict' to get the named entities.")
|
38 |
|
39 |
+
option = st.selectbox('Model', ("dslim/bert-base-NER", "flair/ner-english-fast", "Jean-Baptiste/camembert-ner"))
|
40 |
+
st.write('Selected model:', option)
|
41 |
|
42 |
+
default_text = "Xbox v PlayStation: Giants clash over Call of Duty: Xbox owner Microsoft has hit back at claims its plan to buy the maker of Call of Duty may unfairly affect its rivals, including Sony, which owns PlayStation."
|
43 |
text = st.text_area('Enter text here:', value=default_text)
|
44 |
submit = st.button('Predict')
|
45 |
|
46 |
with st.spinner("Loading model..."):
|
47 |
+
pipe = get_pipe(model_name=option)
|
48 |
|
49 |
if (submit and len(text.strip()) > 0) or len(text.strip()) > 0:
|
|
|
50 |
prediction = pipe(text)
|
51 |
|
52 |
parsed_text = parse_text(text, prediction)
|
53 |
|
54 |
st.header("Prediction:")
|
55 |
annotated_text(*parsed_text)
|
|