File size: 4,907 Bytes
23e54d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import platform,os,traceback
import ffmpeg
import numpy as np
import gradio as gr
from tools.i18n.i18n import I18nAuto
import pandas as pd
i18n = I18nAuto(language=os.environ.get('language','Auto'))

def load_audio(file, sr):
    try:
        # https://github.com/openai/whisper/blob/main/whisper/audio.py#L26
        # This launches a subprocess to decode audio while down-mixing and resampling as necessary.
        # Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
        file = clean_path(file)  # 防止小白拷路径头尾带了空格和"和回车
        if os.path.exists(file) == False:
            raise RuntimeError(
                "You input a wrong audio path that does not exists, please fix it!"
            )
        out, _ = (
            ffmpeg.input(file, threads=0)
            .output("-", format="f32le", acodec="pcm_f32le", ac=1, ar=sr)
            .run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True)
        )
    except Exception as e:
        traceback.print_exc()
        raise RuntimeError(i18n("音频加载失败"))

    return np.frombuffer(out, np.float32).flatten()


def clean_path(path_str:str):
    if path_str.endswith(('\\','/')):
        return clean_path(path_str[0:-1])
    path_str = path_str.replace('/', os.sep).replace('\\', os.sep)
    return path_str.strip(" ").strip('\'').strip("\n").strip('"').strip(" ").strip("\u202a")


def check_for_existance(file_list:list=None,is_train=False,is_dataset_processing=False):
    files_status=[]
    if is_train == True and file_list:
        file_list.append(os.path.join(file_list[0],'2-name2text.txt'))
        file_list.append(os.path.join(file_list[0],'3-bert'))
        file_list.append(os.path.join(file_list[0],'4-cnhubert'))
        file_list.append(os.path.join(file_list[0],'5-wav32k'))
        file_list.append(os.path.join(file_list[0],'6-name2semantic.tsv'))
    for file in file_list:
        if os.path.exists(file):files_status.append(True)
        else:files_status.append(False)
    if sum(files_status)!=len(files_status):
        if is_train:
            for file,status in zip(file_list,files_status):
                if status:pass
                else:gr.Warning(file)
            gr.Warning(i18n('以下文件或文件夹不存在'))
            return False
        elif is_dataset_processing:
            if files_status[0]:
                return True
            elif not files_status[0]:
                gr.Warning(file_list[0])
            elif not files_status[1] and file_list[1]:
                gr.Warning(file_list[1])
            gr.Warning(i18n('以下文件或文件夹不存在'))
            return False
        else:
            if file_list[0]:
                gr.Warning(file_list[0])
                gr.Warning(i18n('以下文件或文件夹不存在'))
            else:
                gr.Warning(i18n('路径不能为空'))
            return False
    return True

def check_details(path_list=None,is_train=False,is_dataset_processing=False):
    if is_dataset_processing:
        list_path, audio_path = path_list
        if (not list_path.endswith('.list')):
            gr.Warning(i18n('请填入正确的List路径'))
            return
        if audio_path:
            if not os.path.isdir(audio_path):
                gr.Warning(i18n('请填入正确的音频文件夹路径'))
                return
        with open(list_path,"r",encoding="utf8")as f:
            line=f.readline().strip("\n").split("\n")
        wav_name, _, __, ___ = line[0].split("|")
        wav_name=clean_path(wav_name)
        if (audio_path != "" and audio_path != None):
            wav_name = os.path.basename(wav_name)
            wav_path = "%s/%s"%(audio_path, wav_name)
        else:
            wav_path=wav_name
        if os.path.exists(wav_path):
            ...
        else:
            gr.Warning(i18n('路径错误'))
        return
    if is_train:
        path_list.append(os.path.join(path_list[0],'2-name2text.txt'))
        path_list.append(os.path.join(path_list[0],'4-cnhubert'))
        path_list.append(os.path.join(path_list[0],'5-wav32k'))
        path_list.append(os.path.join(path_list[0],'6-name2semantic.tsv'))
        phone_path, hubert_path, wav_path, semantic_path = path_list[1:]
        with open(phone_path,'r',encoding='utf-8') as f:
            if f.read(1):...
            else:gr.Warning(i18n('缺少音素数据集'))
        if os.listdir(hubert_path):...
        else:gr.Warning(i18n('缺少Hubert数据集'))
        if os.listdir(wav_path):...
        else:gr.Warning(i18n('缺少音频数据集'))
        df = pd.read_csv(
            semantic_path, delimiter="\t", encoding="utf-8"
        )
        if len(df) >= 1:...
        else:gr.Warning(i18n('缺少语义数据集'))