File size: 9,181 Bytes
dacbe6c
 
 
 
7561365
dacbe6c
 
 
 
7561365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dacbe6c
 
7561365
 
dacbe6c
 
7561365
dacbe6c
 
 
 
 
 
 
 
 
 
7561365
dacbe6c
 
 
 
 
7561365
dacbe6c
 
 
 
 
 
 
 
 
7561365
 
dacbe6c
7561365
dacbe6c
7561365
dacbe6c
 
 
 
 
 
7561365
dacbe6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7561365
dacbe6c
 
7561365
dacbe6c
 
 
 
 
 
 
 
 
7561365
dacbe6c
 
7561365
dacbe6c
7561365
 
 
72433cf
7561365
 
 
 
dacbe6c
72433cf
 
7561365
dacbe6c
7561365
 
 
dacbe6c
 
 
7561365
dacbe6c
7561365
 
 
dacbe6c
 
 
 
7561365
dacbe6c
 
 
 
 
7561365
 
dacbe6c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import cv2
import numpy as np
import csv
import math
import torch
import tempfile
import os
import gradio as gr

# Load the RAFT model from torch.hub (uses the 'raft_small' variant)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
model = torch.hub.load("princeton-vl/RAFT", "raft_small", pretrained=True)
model = model.to(device)
model.eval()

def generate_motion_csv(video_file, output_csv=None):
    """
    Uses the RAFT model to compute optical flow between consecutive frames,
    then writes a CSV file (with columns: frame, mag, ang, zoom) where:
      - mag: median magnitude of the flow,
      - ang: median angle (in degrees), and
      - zoom: fraction of pixels moving away from the image center.
      
    Args:
        video_file (str): Path to the input video.
        output_csv (str): Optional path for output CSV file. If None, a temporary file is used.
    
    Returns:
        output_csv (str): Path to the generated CSV file.
    """
    if output_csv is None:
        temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.csv')
        output_csv = temp_file.name
        temp_file.close()
    
    cap = cv2.VideoCapture(video_file)
    if not cap.isOpened():
        raise ValueError("Could not open video file for CSV generation.")
    
    # Prepare CSV file for writing
    with open(output_csv, 'w', newline='') as csvfile:
        fieldnames = ['frame', 'mag', 'ang', 'zoom']
        writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
        writer.writeheader()
        
        ret, prev_frame = cap.read()
        if not ret:
            raise ValueError("Cannot read first frame from video.")
        
        # Convert the first frame to tensor
        prev_frame_rgb = cv2.cvtColor(prev_frame, cv2.COLOR_BGR2RGB)
        prev_tensor = torch.from_numpy(prev_frame_rgb).permute(2,0,1).float().unsqueeze(0) / 255.0
        prev_tensor = prev_tensor.to(device)
        
        frame_idx = 1
        while True:
            ret, frame = cap.read()
            if not ret:
                break
            
            curr_frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            curr_tensor = torch.from_numpy(curr_frame_rgb).permute(2,0,1).float().unsqueeze(0) / 255.0
            curr_tensor = curr_tensor.to(device)
            
            # Use RAFT to compute optical flow between previous and current frame.
            with torch.no_grad():
                # The RAFT model returns a low-resolution flow and an upsampled (high-res) flow.
                flow_low, flow_up = model(prev_tensor, curr_tensor, iters=20, test_mode=True)
            # Convert flow to numpy array (shape: H x W x 2)
            flow = flow_up[0].permute(1,2,0).cpu().numpy()
            
            # Compute median magnitude and angle for the optical flow
            mag, ang = cv2.cartToPolar(flow[...,0], flow[...,1], angleInDegrees=True)
            median_mag = np.median(mag)
            median_ang = np.median(ang)
            
            # Compute a "zoom factor": fraction of pixels moving away from the center.
            h, w = flow.shape[:2]
            center_x, center_y = w / 2, h / 2
            x_coords, y_coords = np.meshgrid(np.arange(w), np.arange(h))
            x_offset = x_coords - center_x
            y_offset = y_coords - center_y
            # Dot product between flow vectors and pixel offsets:
            dot = flow[...,0] * x_offset + flow[...,1] * y_offset
            zoom_factor = np.count_nonzero(dot > 0) / (w * h)
            
            # Write the computed metrics to the CSV file.
            writer.writerow({
                'frame': frame_idx,
                'mag': median_mag,
                'ang': median_ang,
                'zoom': zoom_factor
            })
            
            # Update for next iteration
            prev_tensor = curr_tensor.clone()
            frame_idx += 1
    
    cap.release()
    print(f"Motion CSV generated: {output_csv}")
    return output_csv

def read_motion_csv(csv_filename):
    """
    Reads the CSV file (columns: frame, mag, ang, zoom) and computes a cumulative
    offset per frame to be used for stabilization.
    
    Returns:
        A dictionary mapping frame numbers to (dx, dy) offsets (the negative cumulative displacement).
    """
    motion_data = {}
    cumulative_dx = 0.0
    cumulative_dy = 0.0
    with open(csv_filename, 'r') as csvfile:
        reader = csv.DictReader(csvfile)
        for row in reader:
            frame_num = int(row['frame'])
            mag = float(row['mag'])
            ang = float(row['ang'])
            # Convert angle (in degrees) to radians.
            rad = math.radians(ang)
            dx = mag * math.cos(rad)
            dy = mag * math.sin(rad)
            cumulative_dx += dx
            cumulative_dy += dy
            # Negative cumulative offset counteracts the detected motion.
            motion_data[frame_num] = (-cumulative_dx, -cumulative_dy)
    return motion_data

def stabilize_video_using_csv(video_file, csv_file, zoom=1.0, output_file=None):
    """
    Stabilizes the input video using motion data from the CSV file.
    
    Args:
        video_file (str): Path to the input video.
        csv_file (str): Path to the motion CSV file.
        zoom (float): Zoom factor to apply before stabilization (default: 1.0, no zoom).
        output_file (str): Path for the output stabilized video. If None, a temporary file is created.
    
    Returns:
        output_file (str): Path to the stabilized video file.
    """
    # Read motion data from CSV
    motion_data = read_motion_csv(csv_file)
    
    cap = cv2.VideoCapture(video_file)
    if not cap.isOpened():
        raise ValueError("Could not open video file for stabilization.")
    
    fps = cap.get(cv2.CAP_PROP_FPS)
    width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    
    if output_file is None:
        temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
        output_file = temp_file.name
        temp_file.close()
    
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    out = cv2.VideoWriter(output_file, fourcc, fps, (width, height))
    
    frame_num = 1
    while True:
        ret, frame = cap.read()
        if not ret:
            break
        
        # Optionally apply zoom (resize and center-crop)
        if zoom != 1.0:
            zoomed_frame = cv2.resize(frame, None, fx=zoom, fy=zoom, interpolation=cv2.INTER_LINEAR)
            zoomed_h, zoomed_w = zoomed_frame.shape[:2]
            start_x = max((zoomed_w - width) // 2, 0)
            start_y = max((zoomed_h - height) // 2, 0)
            frame = zoomed_frame[start_y:start_y+height, start_x:start_x+width]
        
        # Get the stabilization offset for the current frame (default to (0,0) if not available)
        dx, dy = motion_data.get(frame_num, (0, 0))
        
        # Apply an affine transformation to counteract the motion.
        transform = np.array([[1, 0, dx],
                              [0, 1, dy]], dtype=np.float32)
        stabilized_frame = cv2.warpAffine(frame, transform, (width, height))
        
        out.write(stabilized_frame)
        frame_num += 1
    
    cap.release()
    out.release()
    print(f"Stabilized video saved to: {output_file}")
    return output_file

def process_video_ai(video_file, zoom):
    """
    Gradio interface function: Given an input video and a zoom factor,
    it uses a deep learning model (RAFT) to generate motion data (video.flow.csv)
    and then stabilizes the video based on that data.
    
    Returns:
        A tuple containing the original video file path and the stabilized video file path.
    """
    # Ensure the input is a file path (if provided as a dict, extract the "name")
    if isinstance(video_file, dict):
        video_file = video_file.get("name", None)
    if video_file is None:
        raise ValueError("Please upload a video file.")
    
    # Generate motion CSV using AI-based optical flow (RAFT)
    csv_file = generate_motion_csv(video_file)
    # Stabilize the video using the generated CSV data
    stabilized_path = stabilize_video_using_csv(video_file, csv_file, zoom=zoom)
    return video_file, stabilized_path

# Build the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# AI-Powered Video Stabilization")
    gr.Markdown("Upload a video and select a zoom factor. The system will automatically use a deep learning model (RAFT) to generate motion data and then stabilize the video.")
    
    with gr.Row():
        with gr.Column():
            video_input = gr.Video(label="Input Video")
            zoom_slider = gr.Slider(minimum=1.0, maximum=2.0, step=0.1, value=1.0, label="Zoom Factor")
            process_button = gr.Button("Process Video")
        with gr.Column():
            original_video = gr.Video(label="Original Video")
            stabilized_video = gr.Video(label="Stabilized Video")
    
    process_button.click(
        fn=process_video_ai,
        inputs=[video_input, zoom_slider],
        outputs=[original_video, stabilized_video]
    )

demo.launch()