Update app.py
Browse files
app.py
CHANGED
@@ -7,14 +7,24 @@ import tempfile
|
|
7 |
import os
|
8 |
import gradio as gr
|
9 |
import time
|
10 |
-
import
|
11 |
|
12 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
print(f"[INFO] Using device: {device}")
|
15 |
|
16 |
-
# Try to load the RAFT model
|
17 |
-
# If it fails, fall back to OpenCV's Farneback optical flow.
|
18 |
try:
|
19 |
print("[INFO] Attempting to load RAFT model from torch.hub...")
|
20 |
raft_model = torch.hub.load("princeton-vl/RAFT", "raft_small", pretrained=True, trust_repo=True)
|
@@ -26,64 +36,58 @@ except Exception as e:
|
|
26 |
print("[INFO] Falling back to OpenCV Farneback optical flow.")
|
27 |
raft_model = None
|
28 |
|
29 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
"""
|
31 |
-
|
32 |
-
|
33 |
-
- Stabilizes the video using the generated motion data.
|
34 |
-
|
35 |
-
Yields:
|
36 |
-
A tuple of (original_video, stabilized_video, logs, progress)
|
37 |
-
During processing, original_video and stabilized_video are None.
|
38 |
-
The final yield returns the video file paths with final logs and progress=100.
|
39 |
"""
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
yield (None, None, "[ERROR] Please upload a video file.", 0)
|
50 |
-
return
|
51 |
-
|
52 |
-
add_log("[INFO] Starting AI-powered video processing...")
|
53 |
-
yield (None, None, add_log("Starting processing..."), 0)
|
54 |
-
|
55 |
# === CSV Generation Phase ===
|
56 |
-
|
57 |
-
yield (None, None, add_log("Starting CSV generation..."), 0)
|
58 |
-
|
59 |
cap = cv2.VideoCapture(video_file)
|
60 |
if not cap.isOpened():
|
61 |
-
|
|
|
62 |
return
|
|
|
63 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
64 |
-
|
65 |
-
|
66 |
-
# Create temporary CSV file.
|
67 |
csv_file = tempfile.NamedTemporaryFile(delete=False, suffix='.csv').name
|
68 |
with open(csv_file, 'w', newline='') as csvfile:
|
69 |
fieldnames = ['frame', 'mag', 'ang', 'zoom']
|
70 |
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
|
71 |
writer.writeheader()
|
72 |
-
|
73 |
ret, first_frame = cap.read()
|
74 |
if not ret:
|
75 |
-
|
|
|
|
|
76 |
return
|
77 |
-
|
78 |
if raft_model is not None:
|
79 |
first_frame_rgb = cv2.cvtColor(first_frame, cv2.COLOR_BGR2RGB)
|
80 |
prev_tensor = torch.from_numpy(first_frame_rgb).permute(2, 0, 1).float().unsqueeze(0) / 255.0
|
81 |
prev_tensor = prev_tensor.to(device)
|
82 |
-
|
83 |
else:
|
84 |
prev_gray = cv2.cvtColor(first_frame, cv2.COLOR_BGR2GRAY)
|
85 |
-
|
86 |
-
|
87 |
frame_idx = 1
|
88 |
while True:
|
89 |
ret, frame = cap.read()
|
@@ -95,7 +99,7 @@ def process_video_ai(video_file, zoom):
|
|
95 |
curr_tensor = torch.from_numpy(curr_frame_rgb).permute(2, 0, 1).float().unsqueeze(0) / 255.0
|
96 |
curr_tensor = curr_tensor.to(device)
|
97 |
with torch.no_grad():
|
98 |
-
|
99 |
flow = flow_up[0].permute(1, 2, 0).cpu().numpy()
|
100 |
prev_tensor = curr_tensor.clone()
|
101 |
else:
|
@@ -104,7 +108,7 @@ def process_video_ai(video_file, zoom):
|
|
104 |
pyr_scale=0.5, levels=3, winsize=15,
|
105 |
iterations=3, poly_n=5, poly_sigma=1.2, flags=0)
|
106 |
prev_gray = curr_gray
|
107 |
-
|
108 |
# Compute median magnitude and angle.
|
109 |
mag, ang = cv2.cartToPolar(flow[...,0], flow[...,1], angleInDegrees=True)
|
110 |
median_mag = np.median(mag)
|
@@ -117,27 +121,24 @@ def process_video_ai(video_file, zoom):
|
|
117 |
y_offset = y_coords - center_y
|
118 |
dot = flow[..., 0] * x_offset + flow[..., 1] * y_offset
|
119 |
zoom_factor = np.count_nonzero(dot > 0) / (w * h)
|
120 |
-
|
121 |
writer.writerow({
|
122 |
'frame': frame_idx,
|
123 |
'mag': median_mag,
|
124 |
'ang': median_ang,
|
125 |
'zoom': zoom_factor
|
126 |
})
|
127 |
-
|
128 |
if frame_idx % 10 == 0 or frame_idx == total_frames:
|
129 |
progress_csv = (frame_idx / total_frames) * 50 # CSV phase: 0-50%
|
130 |
-
|
131 |
-
|
132 |
frame_idx += 1
|
133 |
cap.release()
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
# === Stabilization Phase ===
|
138 |
-
|
139 |
-
yield (None, None, add_log("Starting stabilization..."), 51)
|
140 |
-
|
141 |
# Read the CSV and compute cumulative motion data.
|
142 |
motion_data = {}
|
143 |
cumulative_dx = 0.0
|
@@ -154,9 +155,9 @@ def process_video_ai(video_file, zoom):
|
|
154 |
cumulative_dx += dx
|
155 |
cumulative_dy += dy
|
156 |
motion_data[frame_num] = (-cumulative_dx, -cumulative_dy)
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
# Re-open video for stabilization.
|
161 |
cap = cv2.VideoCapture(video_file)
|
162 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
@@ -167,7 +168,7 @@ def process_video_ai(video_file, zoom):
|
|
167 |
temp_file.close()
|
168 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
169 |
out = cv2.VideoWriter(output_file, fourcc, fps, (width, height))
|
170 |
-
|
171 |
frame_idx = 1
|
172 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
173 |
while True:
|
@@ -180,55 +181,60 @@ def process_video_ai(video_file, zoom):
|
|
180 |
start_x = max((zoomed_w - width) // 2, 0)
|
181 |
start_y = max((zoomed_h - height) // 2, 0)
|
182 |
frame = zoomed_frame[start_y:start_y+height, start_x:start_x+width]
|
183 |
-
|
184 |
dx, dy = motion_data.get(frame_idx, (0, 0))
|
185 |
transform = np.array([[1, 0, dx],
|
186 |
[0, 1, dy]], dtype=np.float32)
|
187 |
stabilized_frame = cv2.warpAffine(frame, transform, (width, height))
|
188 |
out.write(stabilized_frame)
|
189 |
-
|
190 |
if frame_idx % 10 == 0 or frame_idx == total_frames:
|
191 |
progress_stab = 50 + (frame_idx / total_frames) * 50 # Stabilization phase: 50-100%
|
192 |
-
|
193 |
-
|
194 |
frame_idx += 1
|
195 |
cap.release()
|
196 |
out.release()
|
197 |
-
|
198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
|
200 |
# Build the Gradio UI.
|
201 |
with gr.Blocks() as demo:
|
202 |
gr.Markdown("# AI-Powered Video Stabilization")
|
203 |
-
gr.Markdown("Upload a video and select a zoom factor.
|
204 |
-
|
205 |
with gr.Row():
|
206 |
with gr.Column():
|
207 |
video_input = gr.Video(label="Input Video")
|
208 |
zoom_slider = gr.Slider(minimum=1.0, maximum=2.0, step=0.1, value=1.0, label="Zoom Factor")
|
209 |
-
|
210 |
with gr.Column():
|
211 |
original_video = gr.Video(label="Original Video")
|
212 |
stabilized_video = gr.Video(label="Stabilized Video")
|
213 |
logs_output = gr.Textbox(label="Logs", lines=15)
|
214 |
progress_bar = gr.Slider(label="Progress", minimum=0, maximum=100, value=0, interactive=False)
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
fn=process_video_ai,
|
222 |
-
inputs=[video_input, zoom_slider],
|
223 |
-
outputs=[original_video, stabilized_video, logs_output, progress_bar],
|
224 |
-
stream=True
|
225 |
-
)
|
226 |
-
except TypeError as e:
|
227 |
-
print("[WARNING] Streaming not supported in this version of Gradio. Disabling streaming.")
|
228 |
-
process_button.click(
|
229 |
-
fn=process_video_ai,
|
230 |
-
inputs=[video_input, zoom_slider],
|
231 |
-
outputs=[original_video, stabilized_video, logs_output, progress_bar]
|
232 |
-
)
|
233 |
|
234 |
demo.launch()
|
|
|
7 |
import os
|
8 |
import gradio as gr
|
9 |
import time
|
10 |
+
import threading
|
11 |
|
12 |
+
# Global status and result dictionaries.
|
13 |
+
status = {
|
14 |
+
"logs": "",
|
15 |
+
"progress": 0, # 0 to 100
|
16 |
+
"finished": False
|
17 |
+
}
|
18 |
+
result = {
|
19 |
+
"original_video": None,
|
20 |
+
"stabilized_video": None
|
21 |
+
}
|
22 |
+
|
23 |
+
# Set up device for torch.
|
24 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
25 |
print(f"[INFO] Using device: {device}")
|
26 |
|
27 |
+
# Try to load the RAFT model. If it fails, we fall back to Farneback.
|
|
|
28 |
try:
|
29 |
print("[INFO] Attempting to load RAFT model from torch.hub...")
|
30 |
raft_model = torch.hub.load("princeton-vl/RAFT", "raft_small", pretrained=True, trust_repo=True)
|
|
|
36 |
print("[INFO] Falling back to OpenCV Farneback optical flow.")
|
37 |
raft_model = None
|
38 |
|
39 |
+
def append_log(msg):
|
40 |
+
"""Helper to append a log message to the global status."""
|
41 |
+
global status
|
42 |
+
status["logs"] += msg + "\n"
|
43 |
+
print(msg)
|
44 |
+
|
45 |
+
def background_process(video_file, zoom):
|
46 |
"""
|
47 |
+
Runs the full processing: generates a motion CSV using RAFT (or Farneback)
|
48 |
+
and then stabilizes the video. Updates the global status and result.
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
"""
|
50 |
+
global status, result
|
51 |
+
|
52 |
+
status["logs"] = ""
|
53 |
+
status["progress"] = 0
|
54 |
+
status["finished"] = False
|
55 |
+
result["original_video"] = None
|
56 |
+
result["stabilized_video"] = None
|
57 |
+
|
58 |
+
append_log("[INFO] Starting AI-powered video processing...")
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
# === CSV Generation Phase ===
|
60 |
+
append_log("[INFO] Starting motion CSV generation...")
|
|
|
|
|
61 |
cap = cv2.VideoCapture(video_file)
|
62 |
if not cap.isOpened():
|
63 |
+
append_log("[ERROR] Could not open video file for CSV generation.")
|
64 |
+
status["finished"] = True
|
65 |
return
|
66 |
+
|
67 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
68 |
+
append_log(f"[INFO] Total frames in video: {total_frames}")
|
|
|
|
|
69 |
csv_file = tempfile.NamedTemporaryFile(delete=False, suffix='.csv').name
|
70 |
with open(csv_file, 'w', newline='') as csvfile:
|
71 |
fieldnames = ['frame', 'mag', 'ang', 'zoom']
|
72 |
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
|
73 |
writer.writeheader()
|
74 |
+
|
75 |
ret, first_frame = cap.read()
|
76 |
if not ret:
|
77 |
+
append_log("[ERROR] Cannot read first frame from video.")
|
78 |
+
status["finished"] = True
|
79 |
+
cap.release()
|
80 |
return
|
81 |
+
|
82 |
if raft_model is not None:
|
83 |
first_frame_rgb = cv2.cvtColor(first_frame, cv2.COLOR_BGR2RGB)
|
84 |
prev_tensor = torch.from_numpy(first_frame_rgb).permute(2, 0, 1).float().unsqueeze(0) / 255.0
|
85 |
prev_tensor = prev_tensor.to(device)
|
86 |
+
append_log("[INFO] Using RAFT model for optical flow computation.")
|
87 |
else:
|
88 |
prev_gray = cv2.cvtColor(first_frame, cv2.COLOR_BGR2GRAY)
|
89 |
+
append_log("[INFO] Using Farneback optical flow for computation.")
|
90 |
+
|
91 |
frame_idx = 1
|
92 |
while True:
|
93 |
ret, frame = cap.read()
|
|
|
99 |
curr_tensor = torch.from_numpy(curr_frame_rgb).permute(2, 0, 1).float().unsqueeze(0) / 255.0
|
100 |
curr_tensor = curr_tensor.to(device)
|
101 |
with torch.no_grad():
|
102 |
+
_, flow_up = raft_model(prev_tensor, curr_tensor, iters=20, test_mode=True)
|
103 |
flow = flow_up[0].permute(1, 2, 0).cpu().numpy()
|
104 |
prev_tensor = curr_tensor.clone()
|
105 |
else:
|
|
|
108 |
pyr_scale=0.5, levels=3, winsize=15,
|
109 |
iterations=3, poly_n=5, poly_sigma=1.2, flags=0)
|
110 |
prev_gray = curr_gray
|
111 |
+
|
112 |
# Compute median magnitude and angle.
|
113 |
mag, ang = cv2.cartToPolar(flow[...,0], flow[...,1], angleInDegrees=True)
|
114 |
median_mag = np.median(mag)
|
|
|
121 |
y_offset = y_coords - center_y
|
122 |
dot = flow[..., 0] * x_offset + flow[..., 1] * y_offset
|
123 |
zoom_factor = np.count_nonzero(dot > 0) / (w * h)
|
|
|
124 |
writer.writerow({
|
125 |
'frame': frame_idx,
|
126 |
'mag': median_mag,
|
127 |
'ang': median_ang,
|
128 |
'zoom': zoom_factor
|
129 |
})
|
130 |
+
|
131 |
if frame_idx % 10 == 0 or frame_idx == total_frames:
|
132 |
progress_csv = (frame_idx / total_frames) * 50 # CSV phase: 0-50%
|
133 |
+
append_log(f"[INFO] CSV: Processed frame {frame_idx}/{total_frames}")
|
134 |
+
status["progress"] = progress_csv
|
135 |
frame_idx += 1
|
136 |
cap.release()
|
137 |
+
append_log("[INFO] CSV generation complete.")
|
138 |
+
status["progress"] = 50
|
139 |
+
|
140 |
# === Stabilization Phase ===
|
141 |
+
append_log("[INFO] Starting video stabilization...")
|
|
|
|
|
142 |
# Read the CSV and compute cumulative motion data.
|
143 |
motion_data = {}
|
144 |
cumulative_dx = 0.0
|
|
|
155 |
cumulative_dx += dx
|
156 |
cumulative_dy += dy
|
157 |
motion_data[frame_num] = (-cumulative_dx, -cumulative_dy)
|
158 |
+
append_log("[INFO] Motion CSV read complete.")
|
159 |
+
status["progress"] = 55
|
160 |
+
|
161 |
# Re-open video for stabilization.
|
162 |
cap = cv2.VideoCapture(video_file)
|
163 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
|
|
168 |
temp_file.close()
|
169 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
170 |
out = cv2.VideoWriter(output_file, fourcc, fps, (width, height))
|
171 |
+
|
172 |
frame_idx = 1
|
173 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
174 |
while True:
|
|
|
181 |
start_x = max((zoomed_w - width) // 2, 0)
|
182 |
start_y = max((zoomed_h - height) // 2, 0)
|
183 |
frame = zoomed_frame[start_y:start_y+height, start_x:start_x+width]
|
|
|
184 |
dx, dy = motion_data.get(frame_idx, (0, 0))
|
185 |
transform = np.array([[1, 0, dx],
|
186 |
[0, 1, dy]], dtype=np.float32)
|
187 |
stabilized_frame = cv2.warpAffine(frame, transform, (width, height))
|
188 |
out.write(stabilized_frame)
|
|
|
189 |
if frame_idx % 10 == 0 or frame_idx == total_frames:
|
190 |
progress_stab = 50 + (frame_idx / total_frames) * 50 # Stabilization phase: 50-100%
|
191 |
+
append_log(f"[INFO] Stabilization: Processed frame {frame_idx}/{total_frames}")
|
192 |
+
status["progress"] = progress_stab
|
193 |
frame_idx += 1
|
194 |
cap.release()
|
195 |
out.release()
|
196 |
+
append_log("[INFO] Stabilization complete.")
|
197 |
+
status["progress"] = 100
|
198 |
+
status["finished"] = True
|
199 |
+
result["original_video"] = video_file
|
200 |
+
result["stabilized_video"] = output_file
|
201 |
+
|
202 |
+
def start_processing(video_file, zoom):
|
203 |
+
"""Starts background processing in a new thread."""
|
204 |
+
thread = threading.Thread(target=background_process, args=(video_file, zoom), daemon=True)
|
205 |
+
thread.start()
|
206 |
+
return "Processing started."
|
207 |
+
|
208 |
+
def poll_status():
|
209 |
+
"""
|
210 |
+
Returns the current processing status:
|
211 |
+
- original_video: path if finished (else None)
|
212 |
+
- stabilized_video: path if finished (else None)
|
213 |
+
- logs: current logs string
|
214 |
+
- progress: current progress value (0 to 100)
|
215 |
+
"""
|
216 |
+
return result["original_video"], result["stabilized_video"], status["logs"], status["progress"]
|
217 |
|
218 |
# Build the Gradio UI.
|
219 |
with gr.Blocks() as demo:
|
220 |
gr.Markdown("# AI-Powered Video Stabilization")
|
221 |
+
gr.Markdown("Upload a video and select a zoom factor. Click **Process Video** to start processing in the background. Then click **Refresh Status** to update the logs and progress (once processing finishes, the stabilized video will be shown).")
|
222 |
+
|
223 |
with gr.Row():
|
224 |
with gr.Column():
|
225 |
video_input = gr.Video(label="Input Video")
|
226 |
zoom_slider = gr.Slider(minimum=1.0, maximum=2.0, step=0.1, value=1.0, label="Zoom Factor")
|
227 |
+
start_button = gr.Button("Process Video")
|
228 |
with gr.Column():
|
229 |
original_video = gr.Video(label="Original Video")
|
230 |
stabilized_video = gr.Video(label="Stabilized Video")
|
231 |
logs_output = gr.Textbox(label="Logs", lines=15)
|
232 |
progress_bar = gr.Slider(label="Progress", minimum=0, maximum=100, value=0, interactive=False)
|
233 |
+
refresh_button = gr.Button("Refresh Status")
|
234 |
+
|
235 |
+
# When "Process Video" is clicked, start processing.
|
236 |
+
start_button.click(fn=start_processing, inputs=[video_input, zoom_slider], outputs=[logs_output])
|
237 |
+
# When "Refresh Status" is clicked, update logs, progress, and videos.
|
238 |
+
refresh_button.click(fn=poll_status, inputs=[], outputs=[original_video, stabilized_video, logs_output, progress_bar])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
|
240 |
demo.launch()
|