Update app.py
Browse files
app.py
CHANGED
@@ -7,24 +7,14 @@ import tempfile
|
|
7 |
import os
|
8 |
import gradio as gr
|
9 |
import time
|
10 |
-
import
|
11 |
|
12 |
-
#
|
13 |
-
status = {
|
14 |
-
"logs": "",
|
15 |
-
"progress": 0, # from 0 to 100
|
16 |
-
"finished": False
|
17 |
-
}
|
18 |
-
result = {
|
19 |
-
"original_video": None,
|
20 |
-
"stabilized_video": None
|
21 |
-
}
|
22 |
-
|
23 |
-
# Set up device for torch.
|
24 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
25 |
print(f"[INFO] Using device: {device}")
|
26 |
|
27 |
-
# Try to load the RAFT model
|
|
|
28 |
try:
|
29 |
print("[INFO] Attempting to load RAFT model from torch.hub...")
|
30 |
raft_model = torch.hub.load("princeton-vl/RAFT", "raft_small", pretrained=True, trust_repo=True)
|
@@ -36,70 +26,76 @@ except Exception as e:
|
|
36 |
print("[INFO] Falling back to OpenCV Farneback optical flow.")
|
37 |
raft_model = None
|
38 |
|
39 |
-
def
|
40 |
-
"""Append a log message to the global status and print it."""
|
41 |
-
global status
|
42 |
-
status["logs"] += msg + "\n"
|
43 |
-
print(msg)
|
44 |
-
|
45 |
-
def background_process(video_file, zoom):
|
46 |
"""
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
"""
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
# === CSV Generation Phase ===
|
60 |
-
|
|
|
|
|
61 |
cap = cv2.VideoCapture(video_file)
|
62 |
if not cap.isOpened():
|
63 |
-
|
64 |
-
status["finished"] = True
|
65 |
return
|
66 |
-
|
67 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
68 |
-
|
|
|
|
|
69 |
csv_file = tempfile.NamedTemporaryFile(delete=False, suffix='.csv').name
|
70 |
with open(csv_file, 'w', newline='') as csvfile:
|
71 |
fieldnames = ['frame', 'mag', 'ang', 'zoom']
|
72 |
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
|
73 |
writer.writeheader()
|
74 |
-
|
75 |
ret, first_frame = cap.read()
|
76 |
if not ret:
|
77 |
-
|
78 |
-
status["finished"] = True
|
79 |
-
cap.release()
|
80 |
return
|
81 |
-
|
82 |
if raft_model is not None:
|
83 |
first_frame_rgb = cv2.cvtColor(first_frame, cv2.COLOR_BGR2RGB)
|
84 |
prev_tensor = torch.from_numpy(first_frame_rgb).permute(2, 0, 1).float().unsqueeze(0) / 255.0
|
85 |
prev_tensor = prev_tensor.to(device)
|
86 |
-
|
87 |
else:
|
88 |
prev_gray = cv2.cvtColor(first_frame, cv2.COLOR_BGR2GRAY)
|
89 |
-
|
90 |
-
|
91 |
frame_idx = 1
|
|
|
92 |
while True:
|
93 |
ret, frame = cap.read()
|
94 |
if not ret:
|
95 |
break
|
96 |
-
|
97 |
if raft_model is not None:
|
98 |
curr_frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
99 |
curr_tensor = torch.from_numpy(curr_frame_rgb).permute(2, 0, 1).float().unsqueeze(0) / 255.0
|
100 |
curr_tensor = curr_tensor.to(device)
|
101 |
with torch.no_grad():
|
102 |
-
|
103 |
flow = flow_up[0].permute(1, 2, 0).cpu().numpy()
|
104 |
prev_tensor = curr_tensor.clone()
|
105 |
else:
|
@@ -108,12 +104,12 @@ def background_process(video_file, zoom):
|
|
108 |
pyr_scale=0.5, levels=3, winsize=15,
|
109 |
iterations=3, poly_n=5, poly_sigma=1.2, flags=0)
|
110 |
prev_gray = curr_gray
|
111 |
-
|
112 |
-
# Compute median magnitude and angle
|
113 |
-
mag, ang = cv2.cartToPolar(flow[...,
|
114 |
median_mag = np.median(mag)
|
115 |
median_ang = np.median(ang)
|
116 |
-
# Compute zoom factor: fraction of pixels moving away from
|
117 |
h, w = flow.shape[:2]
|
118 |
center_x, center_y = w / 2, h / 2
|
119 |
x_coords, y_coords = np.meshgrid(np.arange(w), np.arange(h))
|
@@ -121,25 +117,28 @@ def background_process(video_file, zoom):
|
|
121 |
y_offset = y_coords - center_y
|
122 |
dot = flow[..., 0] * x_offset + flow[..., 1] * y_offset
|
123 |
zoom_factor = np.count_nonzero(dot > 0) / (w * h)
|
|
|
124 |
writer.writerow({
|
125 |
'frame': frame_idx,
|
126 |
'mag': median_mag,
|
127 |
'ang': median_ang,
|
128 |
'zoom': zoom_factor
|
129 |
})
|
130 |
-
|
131 |
if frame_idx % 10 == 0 or frame_idx == total_frames:
|
132 |
-
progress_csv = (frame_idx / total_frames) * 50 # CSV phase
|
133 |
-
|
134 |
-
|
135 |
frame_idx += 1
|
136 |
cap.release()
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
# === Stabilization Phase ===
|
141 |
-
|
142 |
-
|
|
|
|
|
143 |
motion_data = {}
|
144 |
cumulative_dx = 0.0
|
145 |
cumulative_dy = 0.0
|
@@ -155,10 +154,10 @@ def background_process(video_file, zoom):
|
|
155 |
cumulative_dx += dx
|
156 |
cumulative_dy += dy
|
157 |
motion_data[frame_num] = (-cumulative_dx, -cumulative_dy)
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
# Re-open video for stabilization
|
162 |
cap = cv2.VideoCapture(video_file)
|
163 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
164 |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
@@ -168,7 +167,7 @@ def background_process(video_file, zoom):
|
|
168 |
temp_file.close()
|
169 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
170 |
out = cv2.VideoWriter(output_file, fourcc, fps, (width, height))
|
171 |
-
|
172 |
frame_idx = 1
|
173 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
174 |
while True:
|
@@ -181,59 +180,45 @@ def background_process(video_file, zoom):
|
|
181 |
start_x = max((zoomed_w - width) // 2, 0)
|
182 |
start_y = max((zoomed_h - height) // 2, 0)
|
183 |
frame = zoomed_frame[start_y:start_y+height, start_x:start_x+width]
|
|
|
184 |
dx, dy = motion_data.get(frame_idx, (0, 0))
|
185 |
-
transform = np.array([[1, 0, dx],
|
186 |
-
[0, 1, dy]], dtype=np.float32)
|
187 |
stabilized_frame = cv2.warpAffine(frame, transform, (width, height))
|
188 |
out.write(stabilized_frame)
|
|
|
189 |
if frame_idx % 10 == 0 or frame_idx == total_frames:
|
190 |
-
progress_stab = 50 + (frame_idx / total_frames) * 50 # Stabilization phase
|
191 |
-
|
192 |
-
|
193 |
frame_idx += 1
|
194 |
cap.release()
|
195 |
out.release()
|
196 |
-
|
197 |
-
|
198 |
-
status["finished"] = True
|
199 |
-
result["original_video"] = video_file
|
200 |
-
result["stabilized_video"] = output_file
|
201 |
-
|
202 |
-
def start_processing(video_file, zoom):
|
203 |
-
"""Starts background processing in a new thread."""
|
204 |
-
thread = threading.Thread(target=background_process, args=(video_file, zoom), daemon=True)
|
205 |
-
thread.start()
|
206 |
-
return "[INFO] Processing started..."
|
207 |
|
208 |
-
|
209 |
-
"""
|
210 |
-
Returns the current processing status:
|
211 |
-
- original_video: path if finished (else None)
|
212 |
-
- stabilized_video: path if finished (else None)
|
213 |
-
- logs: current logs string
|
214 |
-
- progress: current progress value (0 to 100)
|
215 |
-
"""
|
216 |
-
return result["original_video"], result["stabilized_video"], status["logs"], status["progress"]
|
217 |
-
|
218 |
-
# Build the Gradio UI.
|
219 |
with gr.Blocks() as demo:
|
220 |
gr.Markdown("# AI-Powered Video Stabilization")
|
221 |
-
gr.Markdown("Upload a video and select a zoom factor.
|
222 |
-
|
223 |
with gr.Row():
|
224 |
with gr.Column():
|
225 |
video_input = gr.Video(label="Input Video")
|
226 |
zoom_slider = gr.Slider(minimum=1.0, maximum=2.0, step=0.1, value=1.0, label="Zoom Factor")
|
227 |
-
|
228 |
with gr.Column():
|
229 |
original_video = gr.Video(label="Original Video")
|
230 |
stabilized_video = gr.Video(label="Stabilized Video")
|
231 |
logs_output = gr.Textbox(label="Logs", lines=15)
|
232 |
progress_bar = gr.Slider(label="Progress", minimum=0, maximum=100, value=0, interactive=False)
|
233 |
-
|
234 |
-
#
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
|
|
|
|
|
|
|
|
|
7 |
import os
|
8 |
import gradio as gr
|
9 |
import time
|
10 |
+
import io
|
11 |
|
12 |
+
# Set up device for torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
print(f"[INFO] Using device: {device}")
|
15 |
|
16 |
+
# Try to load the RAFT model from torch.hub.
|
17 |
+
# If it fails, fall back to OpenCV's Farneback optical flow.
|
18 |
try:
|
19 |
print("[INFO] Attempting to load RAFT model from torch.hub...")
|
20 |
raft_model = torch.hub.load("princeton-vl/RAFT", "raft_small", pretrained=True, trust_repo=True)
|
|
|
26 |
print("[INFO] Falling back to OpenCV Farneback optical flow.")
|
27 |
raft_model = None
|
28 |
|
29 |
+
def process_video_ai(video_file, zoom):
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
"""
|
31 |
+
Generator function for Gradio:
|
32 |
+
- Generates motion data (CSV) from the input video using an AI model (RAFT if available, else Farneback)
|
33 |
+
- Stabilizes the video using the generated motion data.
|
34 |
+
|
35 |
+
Yields:
|
36 |
+
A tuple of (original_video, stabilized_video, logs, progress)
|
37 |
+
During processing, original_video and stabilized_video are None.
|
38 |
+
The final yield returns the video file paths along with final logs and progress=100.
|
39 |
"""
|
40 |
+
logs = []
|
41 |
+
def add_log(msg):
|
42 |
+
logs.append(msg)
|
43 |
+
return "\n".join(logs)
|
44 |
+
|
45 |
+
# Check and extract the file path
|
46 |
+
if isinstance(video_file, dict):
|
47 |
+
video_file = video_file.get("name", None)
|
48 |
+
if video_file is None:
|
49 |
+
yield (None, None, "[ERROR] Please upload a video file.", 0)
|
50 |
+
return
|
51 |
+
|
52 |
+
add_log("[INFO] Starting AI-powered video processing...")
|
53 |
+
yield (None, None, add_log("Starting processing..."), 0)
|
54 |
+
|
55 |
# === CSV Generation Phase ===
|
56 |
+
add_log("[INFO] Starting motion CSV generation...")
|
57 |
+
yield (None, None, add_log("Starting CSV generation..."), 0)
|
58 |
+
|
59 |
cap = cv2.VideoCapture(video_file)
|
60 |
if not cap.isOpened():
|
61 |
+
yield (None, None, add_log("[ERROR] Could not open video file for CSV generation."), 0)
|
|
|
62 |
return
|
|
|
63 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
64 |
+
add_log(f"[INFO] Total frames in video: {total_frames}")
|
65 |
+
|
66 |
+
# Create temporary CSV file
|
67 |
csv_file = tempfile.NamedTemporaryFile(delete=False, suffix='.csv').name
|
68 |
with open(csv_file, 'w', newline='') as csvfile:
|
69 |
fieldnames = ['frame', 'mag', 'ang', 'zoom']
|
70 |
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
|
71 |
writer.writeheader()
|
72 |
+
|
73 |
ret, first_frame = cap.read()
|
74 |
if not ret:
|
75 |
+
yield (None, None, add_log("[ERROR] Cannot read first frame from video."), 0)
|
|
|
|
|
76 |
return
|
77 |
+
|
78 |
if raft_model is not None:
|
79 |
first_frame_rgb = cv2.cvtColor(first_frame, cv2.COLOR_BGR2RGB)
|
80 |
prev_tensor = torch.from_numpy(first_frame_rgb).permute(2, 0, 1).float().unsqueeze(0) / 255.0
|
81 |
prev_tensor = prev_tensor.to(device)
|
82 |
+
add_log("[INFO] Using RAFT model for optical flow computation.")
|
83 |
else:
|
84 |
prev_gray = cv2.cvtColor(first_frame, cv2.COLOR_BGR2GRAY)
|
85 |
+
add_log("[INFO] Using Farneback optical flow for computation.")
|
86 |
+
|
87 |
frame_idx = 1
|
88 |
+
# Process each frame for CSV generation
|
89 |
while True:
|
90 |
ret, frame = cap.read()
|
91 |
if not ret:
|
92 |
break
|
|
|
93 |
if raft_model is not None:
|
94 |
curr_frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
95 |
curr_tensor = torch.from_numpy(curr_frame_rgb).permute(2, 0, 1).float().unsqueeze(0) / 255.0
|
96 |
curr_tensor = curr_tensor.to(device)
|
97 |
with torch.no_grad():
|
98 |
+
flow_low, flow_up = raft_model(prev_tensor, curr_tensor, iters=20, test_mode=True)
|
99 |
flow = flow_up[0].permute(1, 2, 0).cpu().numpy()
|
100 |
prev_tensor = curr_tensor.clone()
|
101 |
else:
|
|
|
104 |
pyr_scale=0.5, levels=3, winsize=15,
|
105 |
iterations=3, poly_n=5, poly_sigma=1.2, flags=0)
|
106 |
prev_gray = curr_gray
|
107 |
+
|
108 |
+
# Compute median magnitude and angle
|
109 |
+
mag, ang = cv2.cartToPolar(flow[...,0], flow[...,1], angleInDegrees=True)
|
110 |
median_mag = np.median(mag)
|
111 |
median_ang = np.median(ang)
|
112 |
+
# Compute zoom factor: fraction of pixels moving away from center
|
113 |
h, w = flow.shape[:2]
|
114 |
center_x, center_y = w / 2, h / 2
|
115 |
x_coords, y_coords = np.meshgrid(np.arange(w), np.arange(h))
|
|
|
117 |
y_offset = y_coords - center_y
|
118 |
dot = flow[..., 0] * x_offset + flow[..., 1] * y_offset
|
119 |
zoom_factor = np.count_nonzero(dot > 0) / (w * h)
|
120 |
+
|
121 |
writer.writerow({
|
122 |
'frame': frame_idx,
|
123 |
'mag': median_mag,
|
124 |
'ang': median_ang,
|
125 |
'zoom': zoom_factor
|
126 |
})
|
127 |
+
|
128 |
if frame_idx % 10 == 0 or frame_idx == total_frames:
|
129 |
+
progress_csv = (frame_idx / total_frames) * 50 # CSV phase is 0-50%
|
130 |
+
add_log(f"[INFO] CSV: Processed frame {frame_idx}/{total_frames}")
|
131 |
+
yield (None, None, add_log(""), progress_csv)
|
132 |
frame_idx += 1
|
133 |
cap.release()
|
134 |
+
add_log("[INFO] CSV generation complete.")
|
135 |
+
yield (None, None, add_log(""), 50)
|
136 |
+
|
137 |
# === Stabilization Phase ===
|
138 |
+
add_log("[INFO] Starting video stabilization...")
|
139 |
+
yield (None, None, add_log("Starting stabilization..."), 51)
|
140 |
+
|
141 |
+
# Read the CSV and compute cumulative motion data
|
142 |
motion_data = {}
|
143 |
cumulative_dx = 0.0
|
144 |
cumulative_dy = 0.0
|
|
|
154 |
cumulative_dx += dx
|
155 |
cumulative_dy += dy
|
156 |
motion_data[frame_num] = (-cumulative_dx, -cumulative_dy)
|
157 |
+
add_log("[INFO] Motion CSV read complete.")
|
158 |
+
yield (None, None, add_log(""), 55)
|
159 |
+
|
160 |
+
# Re-open video for stabilization
|
161 |
cap = cv2.VideoCapture(video_file)
|
162 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
163 |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
|
|
167 |
temp_file.close()
|
168 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
169 |
out = cv2.VideoWriter(output_file, fourcc, fps, (width, height))
|
170 |
+
|
171 |
frame_idx = 1
|
172 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
173 |
while True:
|
|
|
180 |
start_x = max((zoomed_w - width) // 2, 0)
|
181 |
start_y = max((zoomed_h - height) // 2, 0)
|
182 |
frame = zoomed_frame[start_y:start_y+height, start_x:start_x+width]
|
183 |
+
|
184 |
dx, dy = motion_data.get(frame_idx, (0, 0))
|
185 |
+
transform = np.array([[1, 0, dx], [0, 1, dy]], dtype=np.float32)
|
|
|
186 |
stabilized_frame = cv2.warpAffine(frame, transform, (width, height))
|
187 |
out.write(stabilized_frame)
|
188 |
+
|
189 |
if frame_idx % 10 == 0 or frame_idx == total_frames:
|
190 |
+
progress_stab = 50 + (frame_idx / total_frames) * 50 # Stabilization phase is 50-100%
|
191 |
+
add_log(f"[INFO] Stabilization: Processed frame {frame_idx}/{total_frames}")
|
192 |
+
yield (None, None, add_log(""), progress_stab)
|
193 |
frame_idx += 1
|
194 |
cap.release()
|
195 |
out.release()
|
196 |
+
add_log("[INFO] Stabilization complete.")
|
197 |
+
yield (video_file, output_file, add_log(""), 100)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
|
199 |
+
# Build the Gradio UI with streaming enabled.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
with gr.Blocks() as demo:
|
201 |
gr.Markdown("# AI-Powered Video Stabilization")
|
202 |
+
gr.Markdown("Upload a video and select a zoom factor. The system will generate motion data using an AI model (RAFT if available, else Farneback) and then stabilize the video. Logs and progress will update during processing.")
|
203 |
+
|
204 |
with gr.Row():
|
205 |
with gr.Column():
|
206 |
video_input = gr.Video(label="Input Video")
|
207 |
zoom_slider = gr.Slider(minimum=1.0, maximum=2.0, step=0.1, value=1.0, label="Zoom Factor")
|
208 |
+
process_button = gr.Button("Process Video")
|
209 |
with gr.Column():
|
210 |
original_video = gr.Video(label="Original Video")
|
211 |
stabilized_video = gr.Video(label="Stabilized Video")
|
212 |
logs_output = gr.Textbox(label="Logs", lines=15)
|
213 |
progress_bar = gr.Slider(label="Progress", minimum=0, maximum=100, value=0, interactive=False)
|
214 |
+
|
215 |
+
demo.queue() # enable streaming
|
216 |
+
|
217 |
+
process_button.click(
|
218 |
+
fn=process_video_ai,
|
219 |
+
inputs=[video_input, zoom_slider],
|
220 |
+
outputs=[original_video, stabilized_video, logs_output, progress_bar],
|
221 |
+
stream=True # enable streaming updates
|
222 |
+
)
|
223 |
+
|
224 |
+
demo.launch()
|