Update app.py
Browse files
app.py
CHANGED
@@ -7,24 +7,32 @@ import tempfile
|
|
7 |
import os
|
8 |
import gradio as gr
|
9 |
|
10 |
-
#
|
11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
print(f"Using device: {device}")
|
13 |
-
|
14 |
-
model
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
def generate_motion_csv(video_file, output_csv=None):
|
18 |
"""
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
- zoom: fraction of pixels moving away from the image center.
|
24 |
-
|
25 |
Args:
|
26 |
video_file (str): Path to the input video.
|
27 |
-
output_csv (str): Optional
|
28 |
|
29 |
Returns:
|
30 |
output_csv (str): Path to the generated CSV file.
|
@@ -38,40 +46,46 @@ def generate_motion_csv(video_file, output_csv=None):
|
|
38 |
if not cap.isOpened():
|
39 |
raise ValueError("Could not open video file for CSV generation.")
|
40 |
|
41 |
-
# Prepare CSV file for writing
|
42 |
with open(output_csv, 'w', newline='') as csvfile:
|
43 |
fieldnames = ['frame', 'mag', 'ang', 'zoom']
|
44 |
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
|
45 |
writer.writeheader()
|
46 |
|
47 |
-
ret,
|
48 |
if not ret:
|
49 |
raise ValueError("Cannot read first frame from video.")
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
55 |
|
56 |
frame_idx = 1
|
57 |
while True:
|
58 |
ret, frame = cap.read()
|
59 |
if not ret:
|
60 |
break
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
75 |
median_mag = np.median(mag)
|
76 |
median_ang = np.median(ang)
|
77 |
|
@@ -81,11 +95,9 @@ def generate_motion_csv(video_file, output_csv=None):
|
|
81 |
x_coords, y_coords = np.meshgrid(np.arange(w), np.arange(h))
|
82 |
x_offset = x_coords - center_x
|
83 |
y_offset = y_coords - center_y
|
84 |
-
|
85 |
-
dot = flow[...,0] * x_offset + flow[...,1] * y_offset
|
86 |
zoom_factor = np.count_nonzero(dot > 0) / (w * h)
|
87 |
|
88 |
-
# Write the computed metrics to the CSV file.
|
89 |
writer.writerow({
|
90 |
'frame': frame_idx,
|
91 |
'mag': median_mag,
|
@@ -93,21 +105,19 @@ def generate_motion_csv(video_file, output_csv=None):
|
|
93 |
'zoom': zoom_factor
|
94 |
})
|
95 |
|
96 |
-
# Update for next iteration
|
97 |
-
prev_tensor = curr_tensor.clone()
|
98 |
frame_idx += 1
|
99 |
-
|
100 |
cap.release()
|
101 |
print(f"Motion CSV generated: {output_csv}")
|
102 |
return output_csv
|
103 |
|
104 |
def read_motion_csv(csv_filename):
|
105 |
"""
|
106 |
-
Reads
|
107 |
-
offset per frame
|
108 |
|
109 |
Returns:
|
110 |
-
A dictionary mapping frame numbers to (dx, dy) offsets
|
111 |
"""
|
112 |
motion_data = {}
|
113 |
cumulative_dx = 0.0
|
@@ -118,13 +128,11 @@ def read_motion_csv(csv_filename):
|
|
118 |
frame_num = int(row['frame'])
|
119 |
mag = float(row['mag'])
|
120 |
ang = float(row['ang'])
|
121 |
-
# Convert angle (in degrees) to radians.
|
122 |
rad = math.radians(ang)
|
123 |
dx = mag * math.cos(rad)
|
124 |
dy = mag * math.sin(rad)
|
125 |
cumulative_dx += dx
|
126 |
cumulative_dy += dy
|
127 |
-
# Negative cumulative offset counteracts the detected motion.
|
128 |
motion_data[frame_num] = (-cumulative_dx, -cumulative_dy)
|
129 |
return motion_data
|
130 |
|
@@ -135,13 +143,12 @@ def stabilize_video_using_csv(video_file, csv_file, zoom=1.0, output_file=None):
|
|
135 |
Args:
|
136 |
video_file (str): Path to the input video.
|
137 |
csv_file (str): Path to the motion CSV file.
|
138 |
-
zoom (float): Zoom factor to apply before stabilization (default: 1.0
|
139 |
output_file (str): Path for the output stabilized video. If None, a temporary file is created.
|
140 |
|
141 |
Returns:
|
142 |
output_file (str): Path to the stabilized video file.
|
143 |
"""
|
144 |
-
# Read motion data from CSV
|
145 |
motion_data = read_motion_csv(csv_file)
|
146 |
|
147 |
cap = cv2.VideoCapture(video_file)
|
@@ -160,13 +167,12 @@ def stabilize_video_using_csv(video_file, csv_file, zoom=1.0, output_file=None):
|
|
160 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
161 |
out = cv2.VideoWriter(output_file, fourcc, fps, (width, height))
|
162 |
|
163 |
-
|
164 |
while True:
|
165 |
ret, frame = cap.read()
|
166 |
if not ret:
|
167 |
break
|
168 |
|
169 |
-
# Optionally apply zoom (resize and center-crop)
|
170 |
if zoom != 1.0:
|
171 |
zoomed_frame = cv2.resize(frame, None, fx=zoom, fy=zoom, interpolation=cv2.INTER_LINEAR)
|
172 |
zoomed_h, zoomed_w = zoomed_frame.shape[:2]
|
@@ -174,16 +180,13 @@ def stabilize_video_using_csv(video_file, csv_file, zoom=1.0, output_file=None):
|
|
174 |
start_y = max((zoomed_h - height) // 2, 0)
|
175 |
frame = zoomed_frame[start_y:start_y+height, start_x:start_x+width]
|
176 |
|
177 |
-
|
178 |
-
dx, dy = motion_data.get(frame_num, (0, 0))
|
179 |
-
|
180 |
-
# Apply an affine transformation to counteract the motion.
|
181 |
transform = np.array([[1, 0, dx],
|
182 |
[0, 1, dy]], dtype=np.float32)
|
183 |
stabilized_frame = cv2.warpAffine(frame, transform, (width, height))
|
184 |
|
185 |
out.write(stabilized_frame)
|
186 |
-
|
187 |
|
188 |
cap.release()
|
189 |
out.release()
|
@@ -192,29 +195,28 @@ def stabilize_video_using_csv(video_file, csv_file, zoom=1.0, output_file=None):
|
|
192 |
|
193 |
def process_video_ai(video_file, zoom):
|
194 |
"""
|
195 |
-
Gradio interface function:
|
196 |
-
|
197 |
-
|
198 |
|
199 |
Returns:
|
200 |
-
|
201 |
"""
|
202 |
-
# Ensure the input is a file path (if provided as a dict, extract the "name")
|
203 |
if isinstance(video_file, dict):
|
204 |
video_file = video_file.get("name", None)
|
205 |
if video_file is None:
|
206 |
raise ValueError("Please upload a video file.")
|
207 |
|
208 |
-
# Generate motion CSV using AI
|
209 |
csv_file = generate_motion_csv(video_file)
|
210 |
-
# Stabilize the video using the generated CSV
|
211 |
stabilized_path = stabilize_video_using_csv(video_file, csv_file, zoom=zoom)
|
212 |
return video_file, stabilized_path
|
213 |
|
214 |
-
# Build the Gradio
|
215 |
with gr.Blocks() as demo:
|
216 |
gr.Markdown("# AI-Powered Video Stabilization")
|
217 |
-
gr.Markdown("Upload a video and select a zoom factor. The system will automatically
|
218 |
|
219 |
with gr.Row():
|
220 |
with gr.Column():
|
|
|
7 |
import os
|
8 |
import gradio as gr
|
9 |
|
10 |
+
# Set up device for torch
|
11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
print(f"Using device: {device}")
|
13 |
+
|
14 |
+
# Try to load the RAFT model from torch.hub.
|
15 |
+
# If it fails (e.g. due to repository structure changes), we will fall back to OpenCV optical flow.
|
16 |
+
try:
|
17 |
+
# The trust_repo parameter might prompt for confirmation; set it to True.
|
18 |
+
raft_model = torch.hub.load("princeton-vl/RAFT", "raft_small", pretrained=True, trust_repo=True)
|
19 |
+
raft_model = raft_model.to(device)
|
20 |
+
raft_model.eval()
|
21 |
+
print("RAFT model loaded successfully.")
|
22 |
+
except Exception as e:
|
23 |
+
print("Error loading RAFT model:", e)
|
24 |
+
print("Falling back to OpenCV optical flow for motion CSV generation.")
|
25 |
+
raft_model = None
|
26 |
|
27 |
def generate_motion_csv(video_file, output_csv=None):
|
28 |
"""
|
29 |
+
Generates a CSV file with motion data (columns: frame, mag, ang, zoom) from an input video.
|
30 |
+
If the RAFT model is available, it uses it to compute optical flow; otherwise, it falls back to
|
31 |
+
OpenCV's Farneback optical flow.
|
32 |
+
|
|
|
|
|
33 |
Args:
|
34 |
video_file (str): Path to the input video.
|
35 |
+
output_csv (str): Optional output CSV file path. If None, a temporary file is created.
|
36 |
|
37 |
Returns:
|
38 |
output_csv (str): Path to the generated CSV file.
|
|
|
46 |
if not cap.isOpened():
|
47 |
raise ValueError("Could not open video file for CSV generation.")
|
48 |
|
|
|
49 |
with open(output_csv, 'w', newline='') as csvfile:
|
50 |
fieldnames = ['frame', 'mag', 'ang', 'zoom']
|
51 |
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
|
52 |
writer.writeheader()
|
53 |
|
54 |
+
ret, first_frame = cap.read()
|
55 |
if not ret:
|
56 |
raise ValueError("Cannot read first frame from video.")
|
57 |
|
58 |
+
if raft_model is not None:
|
59 |
+
# Convert the first frame to RGB and then to a torch tensor.
|
60 |
+
first_frame_rgb = cv2.cvtColor(first_frame, cv2.COLOR_BGR2RGB)
|
61 |
+
prev_tensor = torch.from_numpy(first_frame_rgb).permute(2, 0, 1).float().unsqueeze(0) / 255.0
|
62 |
+
prev_tensor = prev_tensor.to(device)
|
63 |
+
else:
|
64 |
+
prev_gray = cv2.cvtColor(first_frame, cv2.COLOR_BGR2GRAY)
|
65 |
|
66 |
frame_idx = 1
|
67 |
while True:
|
68 |
ret, frame = cap.read()
|
69 |
if not ret:
|
70 |
break
|
71 |
+
|
72 |
+
if raft_model is not None:
|
73 |
+
curr_frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
74 |
+
curr_tensor = torch.from_numpy(curr_frame_rgb).permute(2, 0, 1).float().unsqueeze(0) / 255.0
|
75 |
+
curr_tensor = curr_tensor.to(device)
|
76 |
+
with torch.no_grad():
|
77 |
+
flow_low, flow_up = raft_model(prev_tensor, curr_tensor, iters=20, test_mode=True)
|
78 |
+
flow = flow_up[0].permute(1, 2, 0).cpu().numpy()
|
79 |
+
prev_tensor = curr_tensor.clone()
|
80 |
+
else:
|
81 |
+
curr_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
82 |
+
flow = cv2.calcOpticalFlowFarneback(prev_gray, curr_gray, None,
|
83 |
+
pyr_scale=0.5, levels=3, winsize=15,
|
84 |
+
iterations=3, poly_n=5, poly_sigma=1.2, flags=0)
|
85 |
+
prev_gray = curr_gray
|
86 |
+
|
87 |
+
# Compute median magnitude and angle of the optical flow.
|
88 |
+
mag, ang = cv2.cartToPolar(flow[..., 0], flow[..., 1], angleInDegrees=True)
|
89 |
median_mag = np.median(mag)
|
90 |
median_ang = np.median(ang)
|
91 |
|
|
|
95 |
x_coords, y_coords = np.meshgrid(np.arange(w), np.arange(h))
|
96 |
x_offset = x_coords - center_x
|
97 |
y_offset = y_coords - center_y
|
98 |
+
dot = flow[..., 0] * x_offset + flow[..., 1] * y_offset
|
|
|
99 |
zoom_factor = np.count_nonzero(dot > 0) / (w * h)
|
100 |
|
|
|
101 |
writer.writerow({
|
102 |
'frame': frame_idx,
|
103 |
'mag': median_mag,
|
|
|
105 |
'zoom': zoom_factor
|
106 |
})
|
107 |
|
|
|
|
|
108 |
frame_idx += 1
|
109 |
+
|
110 |
cap.release()
|
111 |
print(f"Motion CSV generated: {output_csv}")
|
112 |
return output_csv
|
113 |
|
114 |
def read_motion_csv(csv_filename):
|
115 |
"""
|
116 |
+
Reads a motion CSV file (with columns: frame, mag, ang, zoom) and computes a cumulative
|
117 |
+
offset per frame (the negative cumulative displacement) for stabilization.
|
118 |
|
119 |
Returns:
|
120 |
+
A dictionary mapping frame numbers to (dx, dy) offsets.
|
121 |
"""
|
122 |
motion_data = {}
|
123 |
cumulative_dx = 0.0
|
|
|
128 |
frame_num = int(row['frame'])
|
129 |
mag = float(row['mag'])
|
130 |
ang = float(row['ang'])
|
|
|
131 |
rad = math.radians(ang)
|
132 |
dx = mag * math.cos(rad)
|
133 |
dy = mag * math.sin(rad)
|
134 |
cumulative_dx += dx
|
135 |
cumulative_dy += dy
|
|
|
136 |
motion_data[frame_num] = (-cumulative_dx, -cumulative_dy)
|
137 |
return motion_data
|
138 |
|
|
|
143 |
Args:
|
144 |
video_file (str): Path to the input video.
|
145 |
csv_file (str): Path to the motion CSV file.
|
146 |
+
zoom (float): Zoom factor to apply before stabilization (default: 1.0).
|
147 |
output_file (str): Path for the output stabilized video. If None, a temporary file is created.
|
148 |
|
149 |
Returns:
|
150 |
output_file (str): Path to the stabilized video file.
|
151 |
"""
|
|
|
152 |
motion_data = read_motion_csv(csv_file)
|
153 |
|
154 |
cap = cv2.VideoCapture(video_file)
|
|
|
167 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
168 |
out = cv2.VideoWriter(output_file, fourcc, fps, (width, height))
|
169 |
|
170 |
+
frame_idx = 1
|
171 |
while True:
|
172 |
ret, frame = cap.read()
|
173 |
if not ret:
|
174 |
break
|
175 |
|
|
|
176 |
if zoom != 1.0:
|
177 |
zoomed_frame = cv2.resize(frame, None, fx=zoom, fy=zoom, interpolation=cv2.INTER_LINEAR)
|
178 |
zoomed_h, zoomed_w = zoomed_frame.shape[:2]
|
|
|
180 |
start_y = max((zoomed_h - height) // 2, 0)
|
181 |
frame = zoomed_frame[start_y:start_y+height, start_x:start_x+width]
|
182 |
|
183 |
+
dx, dy = motion_data.get(frame_idx, (0, 0))
|
|
|
|
|
|
|
184 |
transform = np.array([[1, 0, dx],
|
185 |
[0, 1, dy]], dtype=np.float32)
|
186 |
stabilized_frame = cv2.warpAffine(frame, transform, (width, height))
|
187 |
|
188 |
out.write(stabilized_frame)
|
189 |
+
frame_idx += 1
|
190 |
|
191 |
cap.release()
|
192 |
out.release()
|
|
|
195 |
|
196 |
def process_video_ai(video_file, zoom):
|
197 |
"""
|
198 |
+
Gradio interface function:
|
199 |
+
- Generates motion data (CSV) from the input video using an AI model (RAFT, if available).
|
200 |
+
- Stabilizes the video based on the generated motion data.
|
201 |
|
202 |
Returns:
|
203 |
+
Tuple containing the original video file path and the stabilized video file path.
|
204 |
"""
|
|
|
205 |
if isinstance(video_file, dict):
|
206 |
video_file = video_file.get("name", None)
|
207 |
if video_file is None:
|
208 |
raise ValueError("Please upload a video file.")
|
209 |
|
210 |
+
# Generate motion CSV using the AI model (or fallback) for optical flow.
|
211 |
csv_file = generate_motion_csv(video_file)
|
212 |
+
# Stabilize the video using the generated CSV.
|
213 |
stabilized_path = stabilize_video_using_csv(video_file, csv_file, zoom=zoom)
|
214 |
return video_file, stabilized_path
|
215 |
|
216 |
+
# Build the Gradio UI.
|
217 |
with gr.Blocks() as demo:
|
218 |
gr.Markdown("# AI-Powered Video Stabilization")
|
219 |
+
gr.Markdown("Upload a video and select a zoom factor. The system will automatically generate motion data (video.flow.csv) using an AI model (RAFT, if available) and then stabilize the video.")
|
220 |
|
221 |
with gr.Row():
|
222 |
with gr.Column():
|