Added compression mode
Browse files
app.py
CHANGED
@@ -27,11 +27,56 @@ except Exception as e:
|
|
27 |
raft_model = None
|
28 |
gr.Warning("Falling back to OpenCV Farneback optical flow.")
|
29 |
|
30 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
"""
|
32 |
Generates a CSV file with motion data (columns: frame, mag, ang, zoom) from an input video.
|
33 |
Uses RAFT if available, otherwise falls back to OpenCV's Farneback optical flow.
|
34 |
-
|
35 |
Updates progress from progress_offset to progress_offset+progress_scale.
|
36 |
"""
|
37 |
start_time = time.time()
|
@@ -121,7 +166,6 @@ def generate_motion_csv(video_file, output_csv=None, progress=gr.Progress(), pro
|
|
121 |
def read_motion_csv(csv_filename):
|
122 |
"""
|
123 |
Reads a motion CSV file and computes cumulative offset per frame.
|
124 |
-
|
125 |
Returns a dictionary mapping frame numbers to (dx, dy) offsets.
|
126 |
"""
|
127 |
print(f"[INFO] Reading motion CSV: {csv_filename}")
|
@@ -143,11 +187,10 @@ def read_motion_csv(csv_filename):
|
|
143 |
print("[INFO] Completed reading motion CSV.")
|
144 |
return motion_data
|
145 |
|
146 |
-
def stabilize_video_using_csv(video_file, csv_file, zoom=1.0, vertical_only=False, progress=gr.Progress(), progress_offset=0.
|
147 |
"""
|
148 |
-
Stabilizes the
|
149 |
If vertical_only is True, only vertical motion is corrected.
|
150 |
-
|
151 |
Updates progress from progress_offset to progress_offset+progress_scale.
|
152 |
"""
|
153 |
start_time = time.time()
|
@@ -207,30 +250,46 @@ def stabilize_video_using_csv(video_file, csv_file, zoom=1.0, vertical_only=Fals
|
|
207 |
print(f"[INFO] Stabilized video saved to: {output_file} in {elapsed:.2f} seconds")
|
208 |
return output_file
|
209 |
|
210 |
-
def process_video_ai(video_file, zoom, vertical_only, progress=gr.Progress(track_tqdm=True)):
|
211 |
"""
|
212 |
Gradio interface function:
|
213 |
-
-
|
|
|
214 |
- Stabilizes the video based on the generated motion data.
|
215 |
- If vertical_only is True, only vertical stabilization is applied.
|
216 |
|
217 |
Returns:
|
218 |
Tuple: (original video file path, stabilized video file path, log output)
|
219 |
"""
|
220 |
-
# Display an info alert.
|
221 |
gr.Info("Starting AI-powered video processing...")
|
222 |
-
|
223 |
log_buffer = io.StringIO()
|
224 |
with redirect_stdout(log_buffer):
|
225 |
if isinstance(video_file, dict):
|
226 |
video_file = video_file.get("name", None)
|
227 |
if video_file is None:
|
228 |
raise gr.Error("Please upload a video file.")
|
229 |
-
|
230 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
gr.Info("Motion CSV generated successfully.")
|
232 |
stabilized_path = stabilize_video_using_csv(video_file, csv_file, zoom=zoom, vertical_only=vertical_only,
|
233 |
-
progress=progress, progress_offset=
|
234 |
gr.Info("Video stabilization complete.")
|
235 |
print("[INFO] Video processing complete.")
|
236 |
logs = log_buffer.getvalue()
|
@@ -239,13 +298,18 @@ def process_video_ai(video_file, zoom, vertical_only, progress=gr.Progress(track
|
|
239 |
# Build the Gradio UI.
|
240 |
with gr.Blocks() as demo:
|
241 |
gr.Markdown("# AI-Powered Video Stabilization")
|
242 |
-
gr.Markdown(
|
|
|
|
|
|
|
243 |
|
244 |
with gr.Row():
|
245 |
with gr.Column():
|
246 |
video_input = gr.Video(label="Input Video")
|
247 |
zoom_slider = gr.Slider(minimum=1.0, maximum=2.0, step=0.1, value=1.0, label="Zoom Factor")
|
248 |
vertical_checkbox = gr.Checkbox(label="Vertical Stabilization Only", value=False)
|
|
|
|
|
249 |
process_button = gr.Button("Process Video")
|
250 |
with gr.Column():
|
251 |
original_video = gr.Video(label="Original Video")
|
@@ -254,7 +318,7 @@ with gr.Blocks() as demo:
|
|
254 |
|
255 |
process_button.click(
|
256 |
fn=process_video_ai,
|
257 |
-
inputs=[video_input, zoom_slider, vertical_checkbox],
|
258 |
outputs=[original_video, stabilized_video, logs_output]
|
259 |
)
|
260 |
|
|
|
27 |
raft_model = None
|
28 |
gr.Warning("Falling back to OpenCV Farneback optical flow.")
|
29 |
|
30 |
+
def compress_video(video_file, compression_factor, progress=gr.Progress(), progress_offset=0.0, progress_scale=0.2, output_file=None):
|
31 |
+
"""
|
32 |
+
Compresses the video by resizing each frame to a lower resolution.
|
33 |
+
The new resolution is (original_width * compression_factor, original_height * compression_factor).
|
34 |
+
Updates progress from progress_offset to progress_offset+progress_scale.
|
35 |
+
"""
|
36 |
+
start_time = time.time()
|
37 |
+
cap = cv2.VideoCapture(video_file)
|
38 |
+
if not cap.isOpened():
|
39 |
+
raise gr.Error("Could not open video file for compression.")
|
40 |
+
|
41 |
+
original_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
42 |
+
original_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
43 |
+
new_width = max(1, int(original_width * compression_factor))
|
44 |
+
new_height = max(1, int(original_height * compression_factor))
|
45 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
46 |
+
|
47 |
+
if output_file is None:
|
48 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
|
49 |
+
output_file = temp_file.name
|
50 |
+
temp_file.close()
|
51 |
+
|
52 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
53 |
+
out = cv2.VideoWriter(output_file, fourcc, fps, (new_width, new_height))
|
54 |
+
|
55 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
56 |
+
frame_idx = 1
|
57 |
+
print(f"[INFO] Starting video compression: {total_frames} frames, target resolution: {new_width}x{new_height}")
|
58 |
+
while True:
|
59 |
+
ret, frame = cap.read()
|
60 |
+
if not ret:
|
61 |
+
break
|
62 |
+
# Resize frame to new resolution
|
63 |
+
compressed_frame = cv2.resize(frame, (new_width, new_height))
|
64 |
+
out.write(compressed_frame)
|
65 |
+
if frame_idx % 10 == 0 or frame_idx == total_frames:
|
66 |
+
print(f"[INFO] Compressed frame {frame_idx}/{total_frames}")
|
67 |
+
progress(progress_offset + (frame_idx/total_frames)*progress_scale, desc="Compressing Video")
|
68 |
+
frame_idx += 1
|
69 |
+
|
70 |
+
cap.release()
|
71 |
+
out.release()
|
72 |
+
elapsed = time.time() - start_time
|
73 |
+
print(f"[INFO] Compressed video saved to: {output_file} in {elapsed:.2f} seconds")
|
74 |
+
return output_file
|
75 |
+
|
76 |
+
def generate_motion_csv(video_file, output_csv=None, progress=gr.Progress(), progress_offset=0.0, progress_scale=0.4):
|
77 |
"""
|
78 |
Generates a CSV file with motion data (columns: frame, mag, ang, zoom) from an input video.
|
79 |
Uses RAFT if available, otherwise falls back to OpenCV's Farneback optical flow.
|
|
|
80 |
Updates progress from progress_offset to progress_offset+progress_scale.
|
81 |
"""
|
82 |
start_time = time.time()
|
|
|
166 |
def read_motion_csv(csv_filename):
|
167 |
"""
|
168 |
Reads a motion CSV file and computes cumulative offset per frame.
|
|
|
169 |
Returns a dictionary mapping frame numbers to (dx, dy) offsets.
|
170 |
"""
|
171 |
print(f"[INFO] Reading motion CSV: {csv_filename}")
|
|
|
187 |
print("[INFO] Completed reading motion CSV.")
|
188 |
return motion_data
|
189 |
|
190 |
+
def stabilize_video_using_csv(video_file, csv_file, zoom=1.0, vertical_only=False, progress=gr.Progress(), progress_offset=0.6, progress_scale=0.4, output_file=None):
|
191 |
"""
|
192 |
+
Stabilizes the video using motion data from the CSV.
|
193 |
If vertical_only is True, only vertical motion is corrected.
|
|
|
194 |
Updates progress from progress_offset to progress_offset+progress_scale.
|
195 |
"""
|
196 |
start_time = time.time()
|
|
|
250 |
print(f"[INFO] Stabilized video saved to: {output_file} in {elapsed:.2f} seconds")
|
251 |
return output_file
|
252 |
|
253 |
+
def process_video_ai(video_file, zoom, vertical_only, compress_mode, compression_factor, progress=gr.Progress(track_tqdm=True)):
|
254 |
"""
|
255 |
Gradio interface function:
|
256 |
+
- Optionally compresses the video if compress_mode is True.
|
257 |
+
- Generates motion data from the (possibly compressed) video.
|
258 |
- Stabilizes the video based on the generated motion data.
|
259 |
- If vertical_only is True, only vertical stabilization is applied.
|
260 |
|
261 |
Returns:
|
262 |
Tuple: (original video file path, stabilized video file path, log output)
|
263 |
"""
|
|
|
264 |
gr.Info("Starting AI-powered video processing...")
|
|
|
265 |
log_buffer = io.StringIO()
|
266 |
with redirect_stdout(log_buffer):
|
267 |
if isinstance(video_file, dict):
|
268 |
video_file = video_file.get("name", None)
|
269 |
if video_file is None:
|
270 |
raise gr.Error("Please upload a video file.")
|
271 |
+
|
272 |
+
# If compression is enabled, compress the video first.
|
273 |
+
if compress_mode:
|
274 |
+
gr.Info("Compressing video before processing...")
|
275 |
+
# Compression phase uses progress 0 to 0.2
|
276 |
+
video_file = compress_video(video_file, compression_factor, progress=progress, progress_offset=0.0, progress_scale=0.2)
|
277 |
+
gr.Info("Video compression complete.")
|
278 |
+
# Set new progress offsets for subsequent phases.
|
279 |
+
motion_offset = 0.2
|
280 |
+
motion_scale = 0.4
|
281 |
+
stabilization_offset = 0.6
|
282 |
+
stabilization_scale = 0.4
|
283 |
+
else:
|
284 |
+
motion_offset = 0.0
|
285 |
+
motion_scale = 0.5
|
286 |
+
stabilization_offset = 0.5
|
287 |
+
stabilization_scale = 0.5
|
288 |
+
|
289 |
+
csv_file = generate_motion_csv(video_file, progress=progress, progress_offset=motion_offset, progress_scale=motion_scale)
|
290 |
gr.Info("Motion CSV generated successfully.")
|
291 |
stabilized_path = stabilize_video_using_csv(video_file, csv_file, zoom=zoom, vertical_only=vertical_only,
|
292 |
+
progress=progress, progress_offset=stabilization_offset, progress_scale=stabilization_scale)
|
293 |
gr.Info("Video stabilization complete.")
|
294 |
print("[INFO] Video processing complete.")
|
295 |
logs = log_buffer.getvalue()
|
|
|
298 |
# Build the Gradio UI.
|
299 |
with gr.Blocks() as demo:
|
300 |
gr.Markdown("# AI-Powered Video Stabilization")
|
301 |
+
gr.Markdown(
|
302 |
+
"Upload a video, select a zoom factor, choose whether to apply only vertical stabilization, and optionally compress the video before processing. "
|
303 |
+
"The system will generate motion data using an AI model (RAFT if available) and then stabilize the video with live progress updates and alerts."
|
304 |
+
)
|
305 |
|
306 |
with gr.Row():
|
307 |
with gr.Column():
|
308 |
video_input = gr.Video(label="Input Video")
|
309 |
zoom_slider = gr.Slider(minimum=1.0, maximum=2.0, step=0.1, value=1.0, label="Zoom Factor")
|
310 |
vertical_checkbox = gr.Checkbox(label="Vertical Stabilization Only", value=False)
|
311 |
+
compress_checkbox = gr.Checkbox(label="Compress Video Before Processing", value=False)
|
312 |
+
compression_slider = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.5, label="Compression Factor (Scale)")
|
313 |
process_button = gr.Button("Process Video")
|
314 |
with gr.Column():
|
315 |
original_video = gr.Video(label="Original Video")
|
|
|
318 |
|
319 |
process_button.click(
|
320 |
fn=process_video_ai,
|
321 |
+
inputs=[video_input, zoom_slider, vertical_checkbox, compress_checkbox, compression_slider],
|
322 |
outputs=[original_video, stabilized_video, logs_output]
|
323 |
)
|
324 |
|