File size: 11,672 Bytes
ea56cb4
1ac25c7
ea56cb4
 
1ac25c7
ea56cb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ac25c7
ea56cb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ac25c7
ea56cb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ac25c7
ea56cb4
 
 
 
 
 
 
 
 
 
 
 
 
1ac25c7
 
ea56cb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ac25c7
ea56cb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ac25c7
ea56cb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ac25c7
ea56cb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
"""Module which defines the code for the "Manage models" tab."""

from collections.abc import Sequence
from functools import partial

import gradio as gr
import pandas as pd
import requests

# Function to search for RVC models on Hugging Face
def search_rvc_models(query):
    url = f"https://huggingface.co/api/models?search={query}&library=rvc"
    response = requests.get(url)
    if response.status_code == 200:
        models = response.json()
        # Create a DataFrame to store the results
        df = pd.DataFrame(models)
        # Filter the DataFrame to only include the desired columns
        df = df[["id", "likes", "downloads"]]
        # Add a new column for the download URL
        df["downloadUrl"] = "https://huggingface.co/" + df["id"]
        # Sort the DataFrame by downloads in descending order
        df = df.sort_values(by="downloads", ascending=False)
        return df
    else:
        return pd.DataFrame({"id": ["No models found"]})

from ultimate_rvc.core.manage.models import (
    delete_all_models,
    delete_models,
    download_model,
    filter_public_models_table,
    get_public_model_tags,
    get_saved_model_names,
    upload_model,
)
from ultimate_rvc.web.common import (
    PROGRESS_BAR,
    confirm_box_js,
    confirmation_harness,
    exception_harness,
    render_msg,
    update_dropdowns,
)
from ultimate_rvc.web.typing_extra import DropdownValue


def _update_models(
    num_components: int,
    value: DropdownValue = None,
    value_indices: Sequence[int] = [],
) -> gr.Dropdown | tuple[gr.Dropdown, ...]:
    """
    Update the choices of one or more dropdown components to the set of
    currently saved voice models.

    Optionally updates the default value of one or more of these
    components.

    Parameters
    ----------
    num_components : int
        Number of dropdown components to update.
    value : DropdownValue, optional
        New value for dropdown components.
    value_indices : Sequence[int], default=[]
        Indices of dropdown components to update the value for.

    Returns
    -------
    gr.Dropdown | tuple[gr.Dropdown, ...]
        Updated dropdown component or components.

    """
    return update_dropdowns(get_saved_model_names, num_components, value, value_indices)


def _filter_public_models_table(tags: Sequence[str], query: str) -> gr.Dataframe:
    """
    Filter table containing metadata of public voice models by tags and
    a search query.

    Parameters
    ----------
    tags : Sequence[str]
        Tags to filter the metadata table by.
    query : str
        Search query to filter the metadata table by.

    Returns
    -------
    gr.Dataframe
        The filtered table rendered in a Gradio dataframe.

    """
    models_table = filter_public_models_table(tags, query)
    return gr.Dataframe(value=models_table)


def _autofill_model_name_and_url(
    public_models_table: pd.DataFrame,
    select_event: gr.SelectData,
) -> tuple[gr.Textbox, gr.Textbox]:
    """
    Autofill two textboxes with respectively the name and URL that is
    saved in the currently selected row of the public models table.

    Parameters
    ----------
    public_models_table : pd.DataFrame
        The public models table saved in a Pandas dataframe.
    select_event : gr.SelectData
        Event containing the index of the currently selected row in the
        public models table.

    Returns
    -------
    name : gr.Textbox
        The textbox containing the model name.

    url : gr.Textbox
        The textbox containing the model URL.

    Raises
    ------
    TypeError
        If the index in the provided event is not a sequence.

    """
    event_index = select_event.index
    if not isinstance(event_index, Sequence):
        err_msg = (
            f"Expected a sequence of indices but got {type(event_index)} from the"
            " provided event."
        )
        raise TypeError(err_msg)
    event_index = event_index[0]
    url = public_models_table.loc[event_index, "URL"]
    name = public_models_table.loc[event_index, "Name"]
    if isinstance(url, str) and isinstance(name, str):
        return gr.Textbox(value=name), gr.Textbox(value=url)
    err_msg = (
        "Expected model name and URL to be strings but got"
        f" {type(name)} and {type(url)} respectively."
    )
    raise TypeError(err_msg)


def render(
    model_delete: gr.Dropdown,
    model_1click: gr.Dropdown,
    model_multi: gr.Dropdown,
) -> None:
    """

    Render "Manage models" tab.

    Parameters
    ----------
    model_delete : gr.Dropdown
        Dropdown for selecting voice models to delete in the
        "Delete models" tab.
    model_1click : gr.Dropdown
        Dropdown for selecting a voice model to use in the
        "One-click generation" tab.
    model_multi : gr.Dropdown
        Dropdown for selecting a voice model to use in the
        "Multi-step generation" tab.

    """
    # Download tab

    dummy_checkbox = gr.Checkbox(visible=False)
    with gr.Tab("Download model"):
        with gr.Accordion("View public models table", open=False):
            gr.Markdown("")
            gr.Markdown("*HOW TO USE*")
            gr.Markdown(
                "- Filter voice models by selecting one or more tags and/or providing a"
                " search query.",
            )
            gr.Markdown(
                "- Select a row in the table to autofill the name and"
                " URL for the given voice model in the form fields below.",
            )
            gr.Markdown("")
            with gr.Row():
                search_query = gr.Textbox(label="Search query")
                tags = gr.CheckboxGroup(
                    value=[],
                    label="Tags",
                    choices=get_public_model_tags(),
                )
            with gr.Row():
                public_models_table = gr.Dataframe(
                    value=_filter_public_models_table,
                    inputs=[tags, search_query],
                    headers=["Name", "Description", "Tags", "Credit", "Added", "URL"],
                    label="Public models table",
                    interactive=False,
                )

        with gr.Row():
            model_url = gr.Textbox(
                label="Model URL",
                info=(
                    "Should point to a zip file containing a .pth model file and"
                    " optionally also an .index file."
                ),
            )
            model_name = gr.Textbox(
                label="Model name",
                info="Enter a unique name for the voice model.",
            )

        with gr.Row(equal_height=True):
            download_btn = gr.Button("Download 🌐", variant="primary", scale=19)
            download_msg = gr.Textbox(
                label="Output message",
                interactive=False,
                scale=20,
            )

        public_models_table.select(
            _autofill_model_name_and_url,
            inputs=public_models_table,
            outputs=[model_name, model_url],
            show_progress="hidden",
        )

        download_btn_click = download_btn.click(
            partial(
                exception_harness(download_model),
                progress_bar=PROGRESS_BAR,
            ),
            inputs=[model_url, model_name],
            outputs=download_msg,
        ).success(
            partial(
                render_msg,
                "[+] Succesfully downloaded voice model!",
            ),
            inputs=model_name,
            outputs=download_msg,
            show_progress="hidden",
        )

    # Upload tab
    with gr.Tab("Upload model"):
        with gr.Accordion("HOW TO USE"):
            gr.Markdown("")
            gr.Markdown(
                "1. Find the .pth file for a locally trained RVC model (e.g. in your"
                " local weights folder) and optionally also a corresponding .index file"
                " (e.g. in your logs/[name] folder)",
            )
            gr.Markdown(
                "2. Upload the files directly or save them to a folder, then compress"
                " that folder and upload the resulting .zip file",
            )
            gr.Markdown("3. Enter a unique name for the uploaded model")
            gr.Markdown("4. Click 'Upload'")

        with gr.Row():
            model_files = gr.File(
                label="Files",
                file_count="multiple",
                file_types=[".zip", ".pth", ".index"],
            )

            local_model_name = gr.Textbox(label="Model name")

        with gr.Row(equal_height=True):
            upload_btn = gr.Button("Upload", variant="primary", scale=19)
            upload_msg = gr.Textbox(
                label="Output message",
                interactive=False,
                scale=20,
            )
            upload_btn_click = upload_btn.click(
                partial(exception_harness(upload_model), progress_bar=PROGRESS_BAR),
                inputs=[model_files, local_model_name],
                outputs=upload_msg,
            ).success(
                partial(
                    render_msg,
                    "[+] Successfully uploaded voice model!",
                ),
                inputs=local_model_name,
                outputs=upload_msg,
                show_progress="hidden",
            )

    with gr.Tab("Delete models"):
        with gr.Row():
            with gr.Column():
                model_delete.render()
                delete_btn = gr.Button("Delete selected", variant="secondary")
                delete_all_btn = gr.Button("Delete all", variant="primary")
            with gr.Column():
                delete_msg = gr.Textbox(label="Output message", interactive=False)
        delete_btn_click = delete_btn.click(
            partial(confirmation_harness(delete_models), progress_bar=PROGRESS_BAR),
            inputs=[dummy_checkbox, model_delete],
            outputs=delete_msg,
            js=confirm_box_js(
                "Are you sure you want to delete the selected voice models?",
            ),
        ).success(
            partial(render_msg, "[-] Successfully deleted selected voice models!"),
            outputs=delete_msg,
            show_progress="hidden",
        )

        delete_all_btn_click = delete_all_btn.click(
            partial(
                confirmation_harness(delete_all_models),
                progress_bar=PROGRESS_BAR,
            ),
            inputs=dummy_checkbox,
            outputs=delete_msg,
            js=confirm_box_js("Are you sure you want to delete all voice models?"),
        ).success(
            partial(render_msg, "[-] Successfully deleted all voice models!"),
            outputs=delete_msg,
            show_progress="hidden",
        )
        
        
    with gr.Tab("Search models"): 
        # Textbox for user to enter search query
        query = gr.Textbox(label="Search for RVC models", placeholder="Enter your search query here")

            # Button to trigger the search
        search_button = gr.Button("Search")
    
         # Output for displaying the search results as a DataFrame
        results = gr.Dataframe(label="Search Results")
    
        # Event listener for the search button
        search_button.click(fn=search_rvc_models, inputs=query, outputs=results)

    for click_event in [
        download_btn_click,
        upload_btn_click,
        delete_btn_click,
        delete_all_btn_click,
    ]:
        click_event.success(
            partial(_update_models, 3, [], [2]),
            outputs=[model_1click, model_multi, model_delete],
            show_progress="hidden",
        )