File size: 3,921 Bytes
66a500b
da28892
a180f58
d9c8156
e920afb
d9c8156
ee7865a
401f757
02458f6
ee7865a
 
 
 
 
 
 
c7f0abc
ee7865a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7f0abc
 
1698092
d9c8156
ee7865a
 
 
 
 
 
 
 
 
da28892
f5b81b8
ee7865a
da28892
ee7865a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da28892
 
ee7865a
 
401f757
ee7865a
 
 
 
 
 
80621e1
ee7865a
66a500b
ee7865a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import gradio as gr
from huggingface_hub import InferenceClient
import os
from datetime import datetime
import json

# Initialize clients
client = InferenceClient("EvanZhouDev/open-genmoji", token=os.getenv("HUGGINGFACE_API_TOKEN"))
llm = InferenceClient("Qwen/Qwen2.5-72B-Instruct")

# Ensure output directories exist
os.makedirs("outputs/images", exist_ok=True)

# Define the process function
def process(prompt, steps, seed, quantize, guidance, width, height):
    print(f"Prompt: {prompt}")
    messages = [
        {
            "role": "system",
            "content": (
                "You are helping create a prompt for a Emoji generation image model. An emoji must be easily "
                "interpreted when small so details must be exaggerated to be clear. Your goal is to use descriptions "
                "to achieve this.\n\nYou will receive a user description, and you must rephrase it to consist of "
                "short phrases separated by periods, adding detail to everything the user provides.\n\nAdd describe "
                "the color of all parts or components of the emoji. Unless otherwise specified by the user, do not "
                "describe people. Do not describe the background of the image. Your output should be in the format:\n\n"
                "```emoji of {description}. {addon phrases}. 3D lighting. no cast shadows.```\n\nThe description "
                "should be a 1 sentence of your interpretation of the emoji. Then, you may choose to add addon phrases."
                " You must use the following in the given scenarios:\n\n- \"cute.\": If generating anything that's not "
                "an object, and also not a human\n- \"enlarged head in cartoon style.\": ONLY animals\n- \"head is "
                "turned towards viewer.\": ONLY humans or animals\n- \"detailed texture.\": ONLY objects\n\nFurther "
                "addon phrases may be added to ensure the clarity of the emoji."
            ),
        },
        {"role": "user", "content": prompt},
    ]

    completion = llm.chat_completion(messages, max_tokens=100)
    response = completion.get("choices")[0].get("message").get("content").replace("```", "").replace("\n", "")
    print(f"Refined Prompt: {response}")

    time = datetime.now().strftime("%Y%m%d%H%M%S")
    image = client.text_to_image(response, steps=steps, seed=seed, quantize=quantize, guidance=guidance, width=width, height=height)
    image.save(f"outputs/images/{time}.png")

    with open(f"outputs/{time}.json", "w") as f:
        json.dump({"prompt": prompt, "refined_prompt": response, "image": f"outputs/images/{time}.png"}, f)

    return image

# Create Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Emoji Generator with Customizable Parameters")
    
    # Input fields
    with gr.Row():
        prompt_input = gr.Textbox(label="Enter a prompt")
        steps_input = gr.Slider(label="Steps", minimum=1, maximum=50, value=20, step=1)
    with gr.Row():
        seed_input = gr.Number(label="Seed", value=2, precision=0)
        quantize_input = gr.Slider(label="Quantize", minimum=1, maximum=16, value=8, step=1)
    with gr.Row():
        guidance_input = gr.Slider(label="Guidance", minimum=1.0, maximum=10.0, value=5.0, step=0.1)
        width_input = gr.Slider(label="Width", minimum=256, maximum=2048, value=1280, step=64)
        height_input = gr.Slider(label="Height", minimum=256, maximum=2048, value=640, step=64)

    # Output
    image_output = gr.Image(label="Generated Image")
    
    # Button to generate the image
    generate_button = gr.Button("Generate Image")
    
    # Define button click behavior
    generate_button.click(
        fn=process,
        inputs=[prompt_input, steps_input, seed_input, quantize_input, guidance_input, width_input, height_input],
        outputs=image_output,
    )

# Launch the app
if __name__ == "__main__":
    demo.launch(show_error=True)