Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,29 +1,18 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
-
|
5 |
-
|
6 |
-
# import spaces #[uncomment to use ZeroGPU]
|
7 |
from diffusers import DiffusionPipeline
|
8 |
import torch
|
9 |
|
10 |
-
|
11 |
-
model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
|
12 |
-
|
13 |
-
if torch.cuda.is_available():
|
14 |
-
torch_dtype = torch.float16
|
15 |
-
else:
|
16 |
-
torch_dtype = torch.float32
|
17 |
-
|
18 |
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev")
|
19 |
pipe.load_lora_weights("EvanZhouDev/open-genmoji")
|
|
|
20 |
pipe = pipe.to(device)
|
21 |
|
22 |
MAX_SEED = np.iinfo(np.int32).max
|
23 |
MAX_IMAGE_SIZE = 1024
|
24 |
|
25 |
-
|
26 |
-
# @spaces.GPU #[uncomment to use ZeroGPU]
|
27 |
def infer(
|
28 |
prompt,
|
29 |
negative_prompt,
|
@@ -33,25 +22,24 @@ def infer(
|
|
33 |
height,
|
34 |
guidance_scale,
|
35 |
num_inference_steps,
|
36 |
-
progress=gr.Progress(track_tqdm=True),
|
37 |
):
|
|
|
38 |
if randomize_seed:
|
39 |
seed = random.randint(0, MAX_SEED)
|
|
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
image = pipe(
|
44 |
prompt=prompt,
|
45 |
-
negative_prompt=negative_prompt,
|
46 |
-
guidance_scale=guidance_scale,
|
47 |
-
num_inference_steps=num_inference_steps,
|
48 |
width=width,
|
49 |
height=height,
|
|
|
|
|
50 |
generator=generator,
|
51 |
).images[0]
|
52 |
|
53 |
-
return
|
54 |
-
|
55 |
|
56 |
examples = [
|
57 |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
@@ -88,7 +76,7 @@ with gr.Blocks(css=css) as demo:
|
|
88 |
label="Negative prompt",
|
89 |
max_lines=1,
|
90 |
placeholder="Enter a negative prompt",
|
91 |
-
visible=
|
92 |
)
|
93 |
|
94 |
seed = gr.Slider(
|
@@ -107,7 +95,7 @@ with gr.Blocks(css=css) as demo:
|
|
107 |
minimum=256,
|
108 |
maximum=MAX_IMAGE_SIZE,
|
109 |
step=32,
|
110 |
-
value=
|
111 |
)
|
112 |
|
113 |
height = gr.Slider(
|
@@ -115,7 +103,7 @@ with gr.Blocks(css=css) as demo:
|
|
115 |
minimum=256,
|
116 |
maximum=MAX_IMAGE_SIZE,
|
117 |
step=32,
|
118 |
-
value=
|
119 |
)
|
120 |
|
121 |
with gr.Row():
|
@@ -124,7 +112,7 @@ with gr.Blocks(css=css) as demo:
|
|
124 |
minimum=0.0,
|
125 |
maximum=10.0,
|
126 |
step=0.1,
|
127 |
-
value=
|
128 |
)
|
129 |
|
130 |
num_inference_steps = gr.Slider(
|
@@ -132,25 +120,25 @@ with gr.Blocks(css=css) as demo:
|
|
132 |
minimum=1,
|
133 |
maximum=50,
|
134 |
step=1,
|
135 |
-
value=
|
136 |
)
|
137 |
|
138 |
gr.Examples(examples=examples, inputs=[prompt])
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
|
155 |
if __name__ == "__main__":
|
156 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
|
|
|
|
|
|
4 |
from diffusers import DiffusionPipeline
|
5 |
import torch
|
6 |
|
7 |
+
# Load the pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev")
|
9 |
pipe.load_lora_weights("EvanZhouDev/open-genmoji")
|
10 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
pipe = pipe.to(device)
|
12 |
|
13 |
MAX_SEED = np.iinfo(np.int32).max
|
14 |
MAX_IMAGE_SIZE = 1024
|
15 |
|
|
|
|
|
16 |
def infer(
|
17 |
prompt,
|
18 |
negative_prompt,
|
|
|
22 |
height,
|
23 |
guidance_scale,
|
24 |
num_inference_steps,
|
|
|
25 |
):
|
26 |
+
# Handle seed randomization
|
27 |
if randomize_seed:
|
28 |
seed = random.randint(0, MAX_SEED)
|
29 |
+
generator = torch.manual_seed(seed)
|
30 |
|
31 |
+
# Generate the image using the pipeline
|
32 |
+
result = pipe(
|
|
|
33 |
prompt=prompt,
|
34 |
+
negative_prompt=negative_prompt if negative_prompt else None,
|
|
|
|
|
35 |
width=width,
|
36 |
height=height,
|
37 |
+
guidance_scale=guidance_scale,
|
38 |
+
num_inference_steps=num_inference_steps,
|
39 |
generator=generator,
|
40 |
).images[0]
|
41 |
|
42 |
+
return result, seed
|
|
|
43 |
|
44 |
examples = [
|
45 |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
|
|
76 |
label="Negative prompt",
|
77 |
max_lines=1,
|
78 |
placeholder="Enter a negative prompt",
|
79 |
+
visible=True,
|
80 |
)
|
81 |
|
82 |
seed = gr.Slider(
|
|
|
95 |
minimum=256,
|
96 |
maximum=MAX_IMAGE_SIZE,
|
97 |
step=32,
|
98 |
+
value=512, # Default width for your model
|
99 |
)
|
100 |
|
101 |
height = gr.Slider(
|
|
|
103 |
minimum=256,
|
104 |
maximum=MAX_IMAGE_SIZE,
|
105 |
step=32,
|
106 |
+
value=512, # Default height for your model
|
107 |
)
|
108 |
|
109 |
with gr.Row():
|
|
|
112 |
minimum=0.0,
|
113 |
maximum=10.0,
|
114 |
step=0.1,
|
115 |
+
value=7.5, # Default guidance scale for your model
|
116 |
)
|
117 |
|
118 |
num_inference_steps = gr.Slider(
|
|
|
120 |
minimum=1,
|
121 |
maximum=50,
|
122 |
step=1,
|
123 |
+
value=25, # Default number of inference steps for your model
|
124 |
)
|
125 |
|
126 |
gr.Examples(examples=examples, inputs=[prompt])
|
127 |
+
|
128 |
+
run_button.click(
|
129 |
+
infer,
|
130 |
+
inputs=[
|
131 |
+
prompt,
|
132 |
+
negative_prompt,
|
133 |
+
seed,
|
134 |
+
randomize_seed,
|
135 |
+
width,
|
136 |
+
height,
|
137 |
+
guidance_scale,
|
138 |
+
num_inference_steps,
|
139 |
+
],
|
140 |
+
outputs=[result, seed],
|
141 |
+
)
|
142 |
|
143 |
if __name__ == "__main__":
|
144 |
demo.launch()
|