Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,13 @@ import numpy as np
|
|
3 |
import random
|
4 |
import torch
|
5 |
from diffusers import DiffusionPipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
MAX_SEED = np.iinfo(np.int32).max
|
8 |
MAX_IMAGE_SIZE = 1024
|
@@ -16,14 +23,12 @@ def infer(
|
|
16 |
height,
|
17 |
guidance_scale,
|
18 |
num_inference_steps,
|
19 |
-
user_info,
|
20 |
):
|
21 |
-
if not user_info or "username" not in user_info:
|
22 |
-
return "Please log in to generate images.", None
|
23 |
-
|
24 |
# Load the pipeline only when this function is called
|
25 |
-
pipe = DiffusionPipeline.from_pretrained(
|
26 |
-
|
|
|
|
|
27 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
28 |
pipe = pipe.to(device)
|
29 |
|
@@ -62,20 +67,6 @@ with gr.Blocks(css=css) as demo:
|
|
62 |
with gr.Column(elem_id="col-container"):
|
63 |
gr.Markdown(" # Text-to-Image Gradio Template")
|
64 |
|
65 |
-
# Login Button inside the Blocks context
|
66 |
-
login_button = gr.LoginButton()
|
67 |
-
login_button.activate()
|
68 |
-
user_info = gr.State()
|
69 |
-
|
70 |
-
def update_user_info(profile):
|
71 |
-
if profile is None:
|
72 |
-
return "No user information available"
|
73 |
-
return profile
|
74 |
-
|
75 |
-
login_button.click(
|
76 |
-
update_user_info, inputs=None, outputs=user_info
|
77 |
-
)
|
78 |
-
|
79 |
with gr.Row():
|
80 |
prompt = gr.Text(
|
81 |
label="Prompt",
|
@@ -147,7 +138,6 @@ with gr.Blocks(css=css) as demo:
|
|
147 |
height,
|
148 |
guidance_scale,
|
149 |
num_inference_steps,
|
150 |
-
user_info,
|
151 |
],
|
152 |
outputs=[result, seed],
|
153 |
)
|
|
|
3 |
import random
|
4 |
import torch
|
5 |
from diffusers import DiffusionPipeline
|
6 |
+
from huggingface_hub import login
|
7 |
+
|
8 |
+
# Replace 'YOUR_HUGGINGFACE_API_TOKEN' with your actual token
|
9 |
+
api_token = 'YOUR_HUGGINGFACE_API_TOKEN'
|
10 |
+
|
11 |
+
# Log in to Hugging Face Hub
|
12 |
+
login(token=api_token)
|
13 |
|
14 |
MAX_SEED = np.iinfo(np.int32).max
|
15 |
MAX_IMAGE_SIZE = 1024
|
|
|
23 |
height,
|
24 |
guidance_scale,
|
25 |
num_inference_steps,
|
|
|
26 |
):
|
|
|
|
|
|
|
27 |
# Load the pipeline only when this function is called
|
28 |
+
pipe = DiffusionPipeline.from_pretrained(
|
29 |
+
"black-forest-labs/FLUX.1-dev", use_auth_token=api_token
|
30 |
+
)
|
31 |
+
pipe.load_lora_weights("EvanZhouDev/open-genmoji", use_auth_token=api_token)
|
32 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
33 |
pipe = pipe.to(device)
|
34 |
|
|
|
67 |
with gr.Column(elem_id="col-container"):
|
68 |
gr.Markdown(" # Text-to-Image Gradio Template")
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
with gr.Row():
|
71 |
prompt = gr.Text(
|
72 |
label="Prompt",
|
|
|
138 |
height,
|
139 |
guidance_scale,
|
140 |
num_inference_steps,
|
|
|
141 |
],
|
142 |
outputs=[result, seed],
|
143 |
)
|