"""Module which defines functions to manage voice models.""" import re import shutil import urllib.request import zipfile from _collections_abc import Sequence from pathlib import Path import gradio as gr from ultimate_rvc.common import RVC_MODELS_DIR from ultimate_rvc.core.common import ( FLAG_FILE, copy_files_to_new_dir, display_progress, json_load, validate_url, ) from ultimate_rvc.core.exceptions import ( Entity, Location, NotFoundError, NotProvidedError, UIMessage, UploadFormatError, UploadLimitError, VoiceModelExistsError, VoiceModelNotFoundError, ) from ultimate_rvc.core.typing_extra import ( ModelMetaData, ModelMetaDataList, ModelMetaDataPredicate, ModelMetaDataTable, ModelTagName, ) from ultimate_rvc.typing_extra import StrPath PUBLIC_MODELS_JSON = json_load(Path(__file__).parent / "public_models.json") PUBLIC_MODELS_TABLE = ModelMetaDataTable.model_validate(PUBLIC_MODELS_JSON) def get_saved_model_names() -> list[str]: """ Get the names of all saved voice models. Returns ------- list[str] A list of names of all saved voice models. """ model_paths = RVC_MODELS_DIR.iterdir() names_to_remove = ["hubert_base.pt", "rmvpe.pt", FLAG_FILE.name] return sorted([ model_path.name for model_path in model_paths if model_path.name not in names_to_remove ]) def load_public_models_table( predicates: Sequence[ModelMetaDataPredicate], ) -> ModelMetaDataList: """ Load table containing metadata of public voice models, optionally filtered by a set of predicates. Parameters ---------- predicates : Sequence[ModelMetaDataPredicate] Predicates to filter the metadata table by. Returns ------- ModelMetaDataList List containing metadata for each public voice model that satisfies the given predicates. """ return [ [ model.name, model.description, model.tags, model.credit, model.added, model.url, ] for model in PUBLIC_MODELS_TABLE.models if all(predicate(model) for predicate in predicates) ] def get_public_model_tags() -> list[ModelTagName]: """ get the names of all valid public voice model tags. Returns ------- list[str] A list of names of all valid public voice model tags. """ return [tag.name for tag in PUBLIC_MODELS_TABLE.tags] def filter_public_models_table( tags: Sequence[str], query: str, ) -> ModelMetaDataList: """ Filter table containing metadata of public voice models by tags and a search query. The search query is matched against the name, description, tags, credit,and added date of each entry in the metadata table. Case insensitive search is performed. If the search query is empty, the metadata table is filtered only bythe given tags. Parameters ---------- tags : Sequence[str] Tags to filter the metadata table by. query : str Search query to filter the metadata table by. Returns ------- ModelMetaDataList List containing metadata for each public voice model that match the given tags and search query. """ def _tags_predicate(model: ModelMetaData) -> bool: return all(tag in model.tags for tag in tags) def _query_predicate(model: ModelMetaData) -> bool: return ( query.lower() in ( f"{model.name} {model.description} {' '.join(model.tags)} " f"{model.credit} {model.added}" ).lower() if query else True ) filter_fns = [_tags_predicate, _query_predicate] return load_public_models_table(filter_fns) def _extract_model( zip_file: StrPath, extraction_dir: StrPath, remove_incomplete: bool = True, remove_zip: bool = False, ) -> None: """ Extract a zipped voice model to a directory. Parameters ---------- zip_file : StrPath The path to a zip file containing the voice model to extract. extraction_dir : StrPath The path to the directory to extract the voice model to. remove_incomplete : bool, default=True Whether to remove the extraction directory if the extraction process fails. remove_zip : bool, default=False Whether to remove the zip file once the extraction process is complete. Raises ------ NotFoundError If no model file is found in the extracted zip file. """ extraction_path = Path(extraction_dir) zip_path = Path(zip_file) extraction_completed = False try: extraction_path.mkdir(parents=True) with zipfile.ZipFile(zip_path, "r") as zip_ref: zip_ref.extractall(extraction_path) file_path_map = { ext: Path(root, name) for root, _, files in extraction_path.walk() for name in files for ext in [".index", ".pth"] if Path(name).suffix == ext and Path(root, name).stat().st_size > 1024 * (100 if ext == ".index" else 1024 * 40) } if ".pth" not in file_path_map: raise NotFoundError( entity=Entity.MODEL_FILE, location=Location.EXTRACTED_ZIP_FILE, is_path=False, ) # move model and index file to root of the extraction directory for file_path in file_path_map.values(): file_path.rename(extraction_path / file_path.name) # remove any sub-directories within the extraction directory for path in extraction_path.iterdir(): if path.is_dir(): shutil.rmtree(path) extraction_completed = True finally: if not extraction_completed and remove_incomplete and extraction_path.is_dir(): shutil.rmtree(extraction_path) if remove_zip and zip_path.exists(): zip_path.unlink() def download_model( url: str, name: str, progress_bar: gr.Progress | None = None, percentages: tuple[float, float] = (0.0, 0.5), ) -> None: """ Download a zipped voice model. Parameters ---------- url : str An URL pointing to a location where the zipped voice model can be downloaded from. name : str The name to give to the downloaded voice model. progress_bar : gr.Progress, optional Gradio progress bar to update. percentages : tuple[float, float], default=(0.0, 0.5) Percentages to display in the progress bar. Raises ------ NotProvidedError If no URL or name is provided. VoiceModelExistsError If a voice model with the provided name already exists. """ if not url: raise NotProvidedError(entity=Entity.URL) if not name: raise NotProvidedError(entity=Entity.MODEL_NAME) extraction_path = RVC_MODELS_DIR / name if extraction_path.exists(): raise VoiceModelExistsError(name) validate_url(url) zip_name = url.split("/")[-1].split("?")[0] # NOTE in case huggingface link is a direct link rather # than a resolve link then convert it to a resolve link url = re.sub( r"https://huggingface.co/([^/]+)/([^/]+)/blob/(.*)", r"https://huggingface.co/\1/\2/resolve/\3", url, ) if "pixeldrain.com" in url: url = f"https://pixeldrain.com/api/file/{zip_name}" display_progress( "[~] Downloading voice model ...", percentages[0], progress_bar, ) urllib.request.urlretrieve(url, zip_name) # noqa: S310 display_progress("[~] Extracting zip file...", percentages[1], progress_bar) _extract_model(zip_name, extraction_path, remove_zip=True) def upload_model( files: Sequence[StrPath], name: str, progress_bar: gr.Progress | None = None, percentage: float = 0.5, ) -> None: """ Upload a voice model from either a zip file or a .pth file and an optional index file. Parameters ---------- files : Sequence[StrPath] Paths to the files to upload. name : str The name to give to the uploaded voice model. progress_bar : gr.Progress, optional Gradio progress bar to update. percentage : float, default=0.5 Percentage to display in the progress bar. Raises ------ NotProvidedError If no file paths or name are provided. VoiceModelExistsError If a voice model with the provided name already exists. UploadFormatError If a single uploaded file is not a .pth file or a .zip file. If two uploaded files are not a .pth file and an .index file. UploadLimitError If more than two file paths are provided. """ if not files: raise NotProvidedError(entity=Entity.FILES, ui_msg=UIMessage.NO_UPLOADED_FILES) if not name: raise NotProvidedError(entity=Entity.MODEL_NAME) model_dir_path = RVC_MODELS_DIR / name if model_dir_path.exists(): raise VoiceModelExistsError(name) sorted_file_paths = sorted([Path(f) for f in files], key=lambda f: f.suffix) match sorted_file_paths: case [file_path]: if file_path.suffix == ".pth": display_progress("[~] Copying .pth file ...", percentage, progress_bar) copy_files_to_new_dir([file_path], model_dir_path) # NOTE a .pth file is actually itself a zip file elif zipfile.is_zipfile(file_path): display_progress("[~] Extracting zip file...", percentage, progress_bar) _extract_model(file_path, model_dir_path) else: raise UploadFormatError( entity=Entity.FILES, formats=[".pth", ".zip"], multiple=False, ) case [index_path, pth_path]: if index_path.suffix == ".index" and pth_path.suffix == ".pth": display_progress( "[~] Copying .pth file and index file ...", percentage, progress_bar, ) copy_files_to_new_dir([index_path, pth_path], model_dir_path) else: raise UploadFormatError( entity=Entity.FILES, formats=[".pth", ".index"], multiple=True, ) case _: raise UploadLimitError(entity=Entity.FILES, limit="two") def delete_models( names: Sequence[str], progress_bar: gr.Progress | None = None, percentage: float = 0.5, ) -> None: """ Delete one or more voice models. Parameters ---------- names : Sequence[str] Names of the voice models to delete. progress_bar : gr.Progress, optional Gradio progress bar to update. percentage : float, default=0.5 Percentage to display in the progress bar. Raises ------ NotProvidedError If no names are provided. VoiceModelNotFoundError If a voice model with a provided name does not exist. """ if not names: raise NotProvidedError( entity=Entity.MODEL_NAMES, ui_msg=UIMessage.NO_VOICE_MODELS, ) display_progress( "[~] Deleting voice models ...", percentage, progress_bar, ) for name in names: model_dir_path = RVC_MODELS_DIR / name if not model_dir_path.is_dir(): raise VoiceModelNotFoundError(name) shutil.rmtree(model_dir_path) def delete_all_models( progress_bar: gr.Progress | None = None, percentage: float = 0.5, ) -> None: """ Delete all voice models. Parameters ---------- progress_bar : gr.Progress, optional Gradio progress bar to update. percentage : float, default=0.5 Percentage to display in the progress bar. """ all_model_names = get_saved_model_names() display_progress("[~] Deleting all voice models ...", percentage, progress_bar) for model_name in all_model_names: model_dir_path = RVC_MODELS_DIR / model_name if model_dir_path.is_dir(): shutil.rmtree(model_dir_path)