SpyC0der77 commited on
Commit
1bff21e
·
verified ·
1 Parent(s): 657680c

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +60 -0
app.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from diffusers import StableDiffusionPipeline
3
+
4
+ def apply_lora(pipeline, lora_path):
5
+ """
6
+ Dummy function to simulate the application of LoRA weights.
7
+ Replace this with your actual code to load and integrate LoRA weights.
8
+ """
9
+ if lora_path:
10
+ print(f"Applying LoRA weights from {lora_path}")
11
+ # Insert your LoRA integration code here.
12
+ return pipeline
13
+
14
+ def generate_image(model_name, lora_path, width, height, inference_steps, prompt):
15
+ # Use the provided model name or fall back to a default model
16
+ model_id = model_name.strip() if model_name.strip() else "CompVis/stable-diffusion-v1-5"
17
+
18
+ # Load the diffusion pipeline from Hugging Face
19
+ pipeline = StableDiffusionPipeline.from_pretrained(model_id)
20
+ device = "cuda" if gr.get_config().get("device") == "gpu" else "cpu"
21
+ pipeline = pipeline.to(device)
22
+
23
+ # Apply LoRA if a path is provided
24
+ if lora_path.strip():
25
+ pipeline = apply_lora(pipeline, lora_path.strip())
26
+
27
+ # Generate the image using the specified parameters
28
+ result = pipeline(prompt, width=width, height=height, num_inference_steps=inference_steps)
29
+ return result.images[0]
30
+
31
+ # Build the Gradio interface
32
+ with gr.Blocks() as demo:
33
+ gr.Markdown("# Image Generator with Custom Model & LoRA")
34
+
35
+ model_name_box = gr.Textbox(
36
+ label="Enter Model Name/ID (e.g., CompVis/stable-diffusion-v1-5)",
37
+ value="CompVis/stable-diffusion-v1-5",
38
+ lines=1
39
+ )
40
+ lora_path_box = gr.Textbox(
41
+ label="Enter LoRA Path (leave empty if not using)",
42
+ value="",
43
+ lines=1
44
+ )
45
+
46
+ width_slider = gr.Slider(minimum=256, maximum=1024, value=512, step=64, label="Image Width")
47
+ height_slider = gr.Slider(minimum=256, maximum=1024, value=512, step=64, label="Image Height")
48
+ steps_slider = gr.Slider(minimum=10, maximum=100, value=50, step=1, label="Inference Steps")
49
+ prompt_box = gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="Prompt")
50
+
51
+ generate_button = gr.Button("Generate Image")
52
+ output_image = gr.Image(label="Generated Image")
53
+
54
+ generate_button.click(
55
+ fn=generate_image,
56
+ inputs=[model_name_box, lora_path_box, width_slider, height_slider, steps_slider, prompt_box],
57
+ outputs=output_image
58
+ )
59
+
60
+ demo.launch()