Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from diffusers import StableDiffusionPipeline
|
3 |
+
|
4 |
+
def apply_lora(pipeline, lora_path):
|
5 |
+
"""
|
6 |
+
Dummy function to simulate the application of LoRA weights.
|
7 |
+
Replace this with your actual code to load and integrate LoRA weights.
|
8 |
+
"""
|
9 |
+
if lora_path:
|
10 |
+
print(f"Applying LoRA weights from {lora_path}")
|
11 |
+
# Insert your LoRA integration code here.
|
12 |
+
return pipeline
|
13 |
+
|
14 |
+
def generate_image(model_name, lora_path, width, height, inference_steps, prompt):
|
15 |
+
# Use the provided model name or fall back to a default model
|
16 |
+
model_id = model_name.strip() if model_name.strip() else "CompVis/stable-diffusion-v1-5"
|
17 |
+
|
18 |
+
# Load the diffusion pipeline from Hugging Face
|
19 |
+
pipeline = StableDiffusionPipeline.from_pretrained(model_id)
|
20 |
+
device = "cuda" if gr.get_config().get("device") == "gpu" else "cpu"
|
21 |
+
pipeline = pipeline.to(device)
|
22 |
+
|
23 |
+
# Apply LoRA if a path is provided
|
24 |
+
if lora_path.strip():
|
25 |
+
pipeline = apply_lora(pipeline, lora_path.strip())
|
26 |
+
|
27 |
+
# Generate the image using the specified parameters
|
28 |
+
result = pipeline(prompt, width=width, height=height, num_inference_steps=inference_steps)
|
29 |
+
return result.images[0]
|
30 |
+
|
31 |
+
# Build the Gradio interface
|
32 |
+
with gr.Blocks() as demo:
|
33 |
+
gr.Markdown("# Image Generator with Custom Model & LoRA")
|
34 |
+
|
35 |
+
model_name_box = gr.Textbox(
|
36 |
+
label="Enter Model Name/ID (e.g., CompVis/stable-diffusion-v1-5)",
|
37 |
+
value="CompVis/stable-diffusion-v1-5",
|
38 |
+
lines=1
|
39 |
+
)
|
40 |
+
lora_path_box = gr.Textbox(
|
41 |
+
label="Enter LoRA Path (leave empty if not using)",
|
42 |
+
value="",
|
43 |
+
lines=1
|
44 |
+
)
|
45 |
+
|
46 |
+
width_slider = gr.Slider(minimum=256, maximum=1024, value=512, step=64, label="Image Width")
|
47 |
+
height_slider = gr.Slider(minimum=256, maximum=1024, value=512, step=64, label="Image Height")
|
48 |
+
steps_slider = gr.Slider(minimum=10, maximum=100, value=50, step=1, label="Inference Steps")
|
49 |
+
prompt_box = gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="Prompt")
|
50 |
+
|
51 |
+
generate_button = gr.Button("Generate Image")
|
52 |
+
output_image = gr.Image(label="Generated Image")
|
53 |
+
|
54 |
+
generate_button.click(
|
55 |
+
fn=generate_image,
|
56 |
+
inputs=[model_name_box, lora_path_box, width_slider, height_slider, steps_slider, prompt_box],
|
57 |
+
outputs=output_image
|
58 |
+
)
|
59 |
+
|
60 |
+
demo.launch()
|