Spaces:
Runtime error
Runtime error
File size: 16,586 Bytes
c8be32d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
from __future__ import annotations
from typing import (
TYPE_CHECKING,
AbstractSet,
Any,
Callable,
Dict,
List,
Literal,
Self,
Sequence,
Union,
)
import dataclasses
from gradio.data_classes import FileData, FileDataDict
if TYPE_CHECKING:
from gradio.blocks import Block, BlockContext, Component
from gradio.components import Timer
def set_cancel_events(
triggers: Sequence[EventListenerMethod],
cancels: None | dict[str, Any] | list[dict[str, Any]],
) -> None: ...
class Dependency(dict[Any, Any]):
fn: Callable[..., Any]
associated_timer: Timer | None
then: Callable[..., Any]
success: Callable[..., Any]
def __init__(
self,
trigger: Any,
key_vals: Any,
dep_index: int,
fn: Callable[..., Any],
associated_timer: Timer | None = ...,
) -> None:
"""
The Dependency object is usualy not created directly but is returned when an event listener is set up. It contains the configuration
data for the event listener, and can be used to set up additional event listeners that depend on the completion of the current event
listener using .then() and .success().
Demos: chatbot_consecutive, blocks_chained_events
"""
...
def __call__(self, *args: Any, **kwargs: Any) -> Any: ...
class EventData:
"""
When gr.EventData or one of its subclasses is added as a type hint to an argument of a prediction function, a gr.EventData object will automatically be passed as the value of that argument.
The attributes of this object contains information about the event that triggered the listener. The gr.EventData object itself contains a `.target` attribute that refers to the component
that triggered the event, while subclasses of gr.EventData contains additional attributes that are different for each class.
Example:
import gradio as gr
with gr.Blocks() as demo:
table = gr.Dataframe([[1, 2, 3], [4, 5, 6]])
gallery = gr.Gallery([("cat.jpg", "Cat"), ("dog.jpg", "Dog")])
textbox = gr.Textbox("Hello World!")
statement = gr.Textbox()
def on_select(value, evt: gr.EventData):
return f"The {evt.target} component was selected, and its value was {value}."
table.select(on_select, table, statement)
gallery.select(on_select, gallery, statement)
textbox.select(on_select, textbox, statement)
demo.launch()
Demos: gallery_selections, tictactoe
"""
target: Block | None
_data: Any
def __init__(self, target: Block | None, _data: Any) -> None:
"""
Parameters:
target: The component object that triggered the event. Can be used to distinguish multiple components bound to the same listener.
"""
...
class SelectData(EventData):
"""
The gr.SelectData class is a subclass of gr.EventData that specifically carries information about the `.select()` event. When gr.SelectData
is added as a type hint to an argument of an event listener method, a gr.SelectData object will automatically be passed as the value of that argument.
The attributes of this object contains information about the event that triggered the listener.
Example:
import gradio as gr
with gr.Blocks() as demo:
table = gr.Dataframe([[1, 2, 3], [4, 5, 6]])
gallery = gr.Gallery([("cat.jpg", "Cat"), ("dog.jpg", "Dog")])
textbox = gr.Textbox("Hello World!")
statement = gr.Textbox()
def on_select(evt: gr.SelectData):
return f"You selected {evt.value} at {evt.index} from {evt.target}"
table.select(on_select, table, statement)
gallery.select(on_select, gallery, statement)
textbox.select(on_select, textbox, statement)
demo.launch()
Demos: gallery_selections, tictactoe
"""
index: int | tuple[int, int]
value: Any
row_value: list[Any] | None
col_value: list[Any] | None
selected: bool
def __init__(self, target: Block | None, data: Any) -> None: ...
class KeyUpData(EventData):
"""
The gr.KeyUpData class is a subclass of gr.EventData that specifically carries information about the `.key_up()` event. When gr.KeyUpData
is added as a type hint to an argument of an event listener method, a gr.KeyUpData object will automatically be passed as the value of that argument.
The attributes of this object contains information about the event that triggered the listener.
Example:
import gradio as gr
def test(value, key_up_data: gr.KeyUpData):
return {
"component value": value,
"input value": key_up_data.input_value,
"key": key_up_data.key
}
with gr.Blocks() as demo:
d = gr.Dropdown(["abc", "def"], allow_custom_value=True)
t = gr.JSON()
d.key_up(test, d, t)
demo.launch()
Demos: dropdown_key_up
"""
key: str
input_value: str
def __init__(self, target: Block | None, data: Any) -> None: ...
class DeletedFileData(EventData):
"""
The gr.DeletedFileData class is a subclass of gr.EventData that specifically carries information about the `.delete()` event. When gr.DeletedFileData
is added as a type hint to an argument of an event listener method, a gr.DeletedFileData object will automatically be passed as the value of that argument.
The attributes of this object contains information about the event that triggered the listener.
Example:
import gradio as gr
def test(delete_data: gr.DeletedFileData):
return delete_data.file.path
with gr.Blocks() as demo:
files = gr.File(file_count="multiple")
deleted_file = gr.File()
files.delete(test, None, deleted_file)
demo.launch()
Demos: file_component_events
"""
file: FileData
def __init__(self, target: Block | None, data: FileDataDict) -> None: ...
class LikeData(EventData):
"""
The gr.LikeData class is a subclass of gr.EventData that specifically carries information about the `.like()` event. When gr.LikeData
is added as a type hint to an argument of an event listener method, a gr.LikeData object will automatically be passed as the value of that argument.
The attributes of this object contains information about the event that triggered the listener.
Example:
import gradio as gr
def test(value, like_data: gr.LikeData):
return {
"chatbot_value": value,
"liked_message": like_data.value,
"liked_index": like_data.index,
"liked_or_disliked_as_bool": like_data.liked
}
with gr.Blocks() as demo:
c = gr.Chatbot([("abc", "def")])
t = gr.JSON()
c.like(test, c, t)
demo.launch()
Demos: chatbot_core_components_simple
"""
index: int | tuple[int, int]
value: Any
liked: bool
def __init__(self, target: Block | None, data: Any) -> None: ...
@dataclasses.dataclass
class EventListenerMethod:
block: Block | None
event_name: str
if TYPE_CHECKING:
EventListenerCallable = Callable[
[
Union[Callable[..., Any], None],
Union[Component, Sequence[Component], None],
Union[Block, Sequence[Block], Sequence[Component], Component, None],
Union[str, None, Literal[False]],
bool,
Literal["full", "minimal", "hidden"],
Union[bool, None],
bool,
int,
bool,
bool,
Union[Dict[str, Any], List[Dict[str, Any]], None],
Union[float, None],
Union[Literal["once", "multiple", "always_last"], None],
Union[str, None],
Union[int, None, Literal["default"]],
Union[str, None],
bool,
],
Dependency,
]
class EventListener(str):
has_trigger: bool
config_data: Callable[..., dict[str, Any]]
event_name: str
show_progress: Literal["full", "minimal", "hidden"]
trigger_after: int | None
trigger_only_on_success: bool
callback: Callable[..., Any] | None
doc: str
listener: Callable[..., Dependency]
def __new__(cls, event_name: str, *_args: Any, **_kwargs: Any) -> Self: ...
def __init__(
self,
event_name: str,
has_trigger: bool = ...,
config_data: Callable[..., dict[str, Any]] = ...,
show_progress: Literal["full", "minimal", "hidden"] = ...,
callback: Callable[..., Any] | None = ...,
trigger_after: int | None = ...,
trigger_only_on_success: bool = ...,
doc: str = ...,
) -> None: ...
def set_doc(self, component: str) -> None: ...
def copy(self) -> EventListener: ...
@staticmethod
def _setup(
_event_name: str,
_has_trigger: bool,
_show_progress: Literal["full", "minimal", "hidden"],
_callback: Callable[..., Any] | None,
_trigger_after: int | None,
_trigger_only_on_success: bool,
) -> Callable[..., Dependency]: ...
def on(
triggers: Sequence[EventListenerCallable] | EventListenerCallable | None = ...,
fn: Callable[..., Any] | None | Literal["decorator"] = ...,
inputs: (
Component
| BlockContext
| Sequence[Component | BlockContext]
| AbstractSet[Component | BlockContext]
| None
) = ...,
outputs: (
Component
| BlockContext
| Sequence[Component | BlockContext]
| AbstractSet[Component | BlockContext]
| None
) = ...,
*,
api_name: str | None | Literal[False] = ...,
scroll_to_output: bool = ...,
show_progress: Literal["full", "minimal", "hidden"] = ...,
queue: bool = ...,
batch: bool = ...,
max_batch_size: int = ...,
preprocess: bool = ...,
postprocess: bool = ...,
cancels: dict[str, Any] | list[dict[str, Any]] | None = ...,
trigger_mode: Literal["once", "multiple", "always_last"] | None = ...,
every: float | None = ...,
js: str | None = ...,
concurrency_limit: int | None | Literal["default"] = ...,
concurrency_id: str | None = ...,
show_api: bool = ...,
) -> Dependency:
"""
Sets up an event listener that triggers a function when the specified event(s) occur. This is especially
useful when the same function should be triggered by multiple events. Only a single API endpoint is generated
for all events in the triggers list.
Parameters:
triggers: List of triggers to listen to, e.g. [btn.click, number.change]. If None, will listen to changes to any inputs.
fn: the function to call when this event is triggered. Often a machine learning model's prediction function. Each parameter of the function corresponds to one input component, and the function should return a single value or a tuple of values, with each element in the tuple corresponding to one output component.
inputs: List of gradio.components to use as inputs. If the function takes no inputs, this should be an empty list.
outputs: List of gradio.components to use as outputs. If the function returns no outputs, this should be an empty list.
api_name: Defines how the endpoint appears in the API docs. Can be a string, None, or False. If False, the endpoint will not be exposed in the api docs. If set to None, the endpoint will be exposed in the api docs as an unnamed endpoint, although this behavior will be changed in Gradio 4.0. If set to a string, the endpoint will be exposed in the api docs with the given name.
scroll_to_output: If True, will scroll to output component on completion
show_progress: how to show the progress animation while event is running: "full" shows a spinner which covers the output component area as well as a runtime display in the upper right corner, "minimal" only shows the runtime display, "hidden" shows no progress animation at all
queue: If True, will place the request on the queue, if the queue has been enabled. If False, will not put this event on the queue, even if the queue has been enabled. If None, will use the queue setting of the gradio app.
batch: If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. The lists should be of equal length (and be up to length `max_batch_size`). The function is then *required* to return a tuple of lists (even if there is only 1 output component), with each list in the tuple corresponding to one output component.
max_batch_size: Maximum number of inputs to batch together if this is called from the queue (only relevant if batch=True)
preprocess: If False, will not run preprocessing of component data before running 'fn' (e.g. leaving it as a base64 string if this method is called with the `Image` component).
postprocess: If False, will not run postprocessing of component data before returning 'fn' output to the browser.
cancels: A list of other events to cancel when this listener is triggered. For example, setting cancels=[click_event] will cancel the click_event, where click_event is the return value of another components .click method. Functions that have not yet run (or generators that are iterating) will be cancelled, but functions that are currently running will be allowed to finish.
trigger_mode: If "once" (default for all events except `.change()`) would not allow any submissions while an event is pending. If set to "multiple", unlimited submissions are allowed while pending, and "always_last" (default for `.change()` and `.key_up()` events) would allow a second submission after the pending event is complete.
every: Will be deprecated in favor of gr.Timer. Run this event 'every' number of seconds while the client connection is open. Interpreted in seconds.
js: Optional frontend js method to run before running 'fn'. Input arguments for js method are values of 'inputs', return should be a list of values for output components.
concurrency_limit: If set, this is the maximum number of this event that can be running simultaneously. Can be set to None to mean no concurrency_limit (any number of this event can be running simultaneously). Set to "default" to use the default concurrency limit (defined by the `default_concurrency_limit` parameter in `Blocks.queue()`, which itself is 1 by default).
concurrency_id: If set, this is the id of the concurrency group. Events with the same concurrency_id will be limited by the lowest set concurrency_limit.
show_api: whether to show this event in the "view API" page of the Gradio app, or in the ".view_api()" method of the Gradio clients. Unlike setting api_name to False, setting show_api to False will still allow downstream apps as well as the Clients to use this event. If fn is None, show_api will automatically be set to False.
Example:
import gradio as gr
with gr.Blocks() as demo:
with gr.Row():
input = gr.Textbox()
button = gr.Button("Submit")
output = gr.Textbox()
gr.on(
triggers=[button.click, input.submit],
fn=lambda x: x,
inputs=[input],
outputs=[output]
)
demo.launch()
"""
...
class Events:
change: EventListener
input: EventListener
click: EventListener
double_click: EventListener
submit: EventListener
edit: EventListener
clear: EventListener
play: EventListener
pause: EventListener
stop: EventListener
end: EventListener
start_recording: EventListener
pause_recording: EventListener
stop_recording: EventListener
focus: EventListener
blur: EventListener
upload: EventListener
release: EventListener
select: EventListener
stream: EventListener
like: EventListener
load: EventListener
key_up: EventListener
apply: EventListener
delete: EventListener
tick: EventListener
__all__ = [
"set_cancel_events",
"Dependency",
"EventData",
"SelectData",
"KeyUpData",
"DeletedFileData",
"LikeData",
"EventListenerMethod",
"EventListener",
"on",
"Events",
]
|