ImageRegen / app.py
SpyCoder77's picture
Create app.py
053bf25 verified
raw
history blame
2.12 kB
import gradio as gr
from gradio_client import Client, file
from PIL import Image
import requests
from io import BytesIO
# Initialize the Hugging Face API clients
captioning_client = Client("fancyfeast/joy-caption-pre-alpha")
generation_client = Client("black-forest-labs/FLUX.1-dev")
# Function to caption an image
def caption_image(image):
caption = captioning_client.predict(
input_image=image,
api_name="/stream_chat"
)
return caption
# Function to generate an image from a text prompt using Hugging Face API
def generate_image_from_caption(caption):
image = generation_client.predict(
prompt=caption,
seed=0,
randomize_seed=True,
width=1024,
height=1024,
guidance_scale=3.5,
num_inference_steps=28,
api_name="/infer"
)
return image
# Main function to handle the upload and generate images and captions in a loop
def process_image(image, iterations):
generated_images = []
captions = []
current_image = image
for i in range(iterations):
# Caption the current image
caption = caption_image(current_image)
captions.append(caption)
# Generate a new image based on the caption
new_image = generate_image_from_caption(caption)
generated_images.append(new_image)
# Set the newly generated image as the current image for the next iteration
current_image = new_image
return generated_images, captions
# Gradio Interface
with gr.Blocks() as demo:
with gr.Row():
image_input = gr.Image(type="pil", label="Upload an Image")
iterations_input = gr.Number(value=3, label="Number of Iterations")
with gr.Row():
output_images = gr.Gallery(label="Generated Images")
output_captions = gr.Textbox(label="Generated Captions")
generate_button = gr.Button("Generate")
generate_button.click(
fn=process_image,
inputs=[image_input, iterations_input],
outputs=[output_images, output_captions]
)
# Launch the app
demo.launch()