Spaces:
Sleeping
Sleeping
Mod 0
Browse files- app/main.py +26 -4
- app/utils.py +0 -24
app/main.py
CHANGED
@@ -1,19 +1,41 @@
|
|
1 |
-
import numpy as np
|
2 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
3 |
from fastapi import FastAPI, UploadFile
|
4 |
-
from utils import classify_img,get_alzheimer_model
|
5 |
|
6 |
app=FastAPI(title="Alzheimer Detection API")
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
@app.get("/generate")
|
9 |
def display(text: str):
|
10 |
return {"yoy":text}
|
11 |
|
12 |
-
|
13 |
def predict(file: UploadFile):
|
14 |
img=Image.open(file.file).convert("RGB")
|
15 |
img=img.resize(480,480)
|
16 |
img=np.array(img)
|
17 |
model= get_alzheimer_model()
|
18 |
label,probability=classify_img(model,img)
|
19 |
-
return {"label":label.item(),"probability":probability.item()}
|
|
|
|
|
1 |
from PIL import Image
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from torchvision.models import efficientnet_b0
|
6 |
+
import torchvision.transforms.functional as tf
|
7 |
from fastapi import FastAPI, UploadFile
|
|
|
8 |
|
9 |
app=FastAPI(title="Alzheimer Detection API")
|
10 |
|
11 |
+
def classify_img(model,img):
|
12 |
+
img=tf.to_tensor(img)
|
13 |
+
img=img.unsqueeze(0)
|
14 |
+
with torch.no_grad():
|
15 |
+
predict=model(img)
|
16 |
+
predict=nn.functional.softmax(predict,1)
|
17 |
+
label=torch.argmax(predict)
|
18 |
+
probability=torch.max(predict)
|
19 |
+
return label,probability
|
20 |
+
|
21 |
+
def get_alzheimer_model():
|
22 |
+
model=efficientnet_b0(weights=None)
|
23 |
+
in_features=model.classifier[1].in_features
|
24 |
+
model.classifier[1]=nn.Linear(in_features=in_features,out_features=4)
|
25 |
+
weights=torch.load("alzheimer_weight.pth",map_location="cpu")
|
26 |
+
model.load_state_dict(weights)
|
27 |
+
model.eval()
|
28 |
+
return model
|
29 |
+
|
30 |
@app.get("/generate")
|
31 |
def display(text: str):
|
32 |
return {"yoy":text}
|
33 |
|
34 |
+
@app.post("/predict")
|
35 |
def predict(file: UploadFile):
|
36 |
img=Image.open(file.file).convert("RGB")
|
37 |
img=img.resize(480,480)
|
38 |
img=np.array(img)
|
39 |
model= get_alzheimer_model()
|
40 |
label,probability=classify_img(model,img)
|
41 |
+
return {"label":label.item(),"probability":probability.item()}
|
app/utils.py
DELETED
@@ -1,24 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import torch
|
3 |
-
import torch.nn as nn
|
4 |
-
from torchvision.models import efficientnet_b0
|
5 |
-
import torchvision.transforms.functional as tf
|
6 |
-
|
7 |
-
def classify_img(model,img):
|
8 |
-
img=tf.to_tensor(img)
|
9 |
-
img=img.unsqueeze(0)
|
10 |
-
with torch.no_grad():
|
11 |
-
predict=model(img)
|
12 |
-
predict=nn.functional.softmax(predict,1)
|
13 |
-
label=torch.argmax(predict)
|
14 |
-
probability=torch.max(predict)
|
15 |
-
return label,probability
|
16 |
-
|
17 |
-
def get_alzheimer_model():
|
18 |
-
model=efficientnet_b0(weights=None)
|
19 |
-
in_features=model.classifier[1].in_features
|
20 |
-
model.classifier[1]=nn.Linear(in_features=in_features,out_features=4)
|
21 |
-
weights=torch.load("alzheimer_weight.pth",map_location="cpu")
|
22 |
-
model.load_state_dict(weights)
|
23 |
-
model.eval()
|
24 |
-
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|